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Give a man a fish and you feed him for a day. 
Teach a man to fish and you feed him for a lifetime. 
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1. Introduction 
1.1. Overview 

Positron Emission Tomography (PET) (Ollinger and Fessler, 1997) is a functional 

medical imaging technique that can be used to image biochemical or physiological 

processes within the body.  Such images can be acquired by imaging the decay of radio-

isotopes bound to molecules with known biological properties. Since it relies on isotopes 

undergoing positron decay, it belongs to the field of Nuclear Medicine.  

Similar to many other imaging techniques, it is rapidly moving forward on many aspects: 

radiochemistry, instrumentation, image reconstruction, image processing and visualization, 

in addition to taking part in the ever more thrilling field of image coregistration such as 

PET/CT. The research work on which the present thesis is based is devoted to two of the 

developing fields referred above: instrumentation improvement and image reconstruction. 

In nuclear medicine examinations, a radiopharmaceutical is administered to the patient. 

This radiopharmaceutical is marked with a radionuclide emitting, in the ideal case, one 

single photon with energy in the range 100 - 200 keV in SPECT, and a pure positron 

emitting radionuclide in PET. Positron emitting radionuclides, such as 11C, 13N, and 15O, 

have been used in medicine for decades, with 18F being the most used nowadays. Within 

these radionuclides, an ever growing number of tracer compounds are labeled so as to 

enable measurement of regional biology and biochemistry. The emission of a positron 

results in two annihilation photons of 511 keV. With the advent of tomographic 

reconstruction methods and the development of detector technologies, images generated 

from the detection of the two 511 keV photons have become commonplace. Such images 

allow us to follow the dynamics of the tracers in the body with high sensitivity, producing 

quantitative images of tracer concentration (Zanzonico, 2004; Zanzonico and Heller, 

2007).  

Nowadays	  2-‐Deoxy-‐(18F)	   fluoro-‐D-‐glucose	   (FDG) is the most common radiotracer used in 

PET to stage cancer and locate metastasis in many regions of the body. FDG is 

analogous to glucose and is taken up by living cells through the normal glucose pathway. 

Tumor imaging with FDG relies on the fact that malignant cells show higher metabolic 

rates than normal tissue and therefore take up greater amounts of FDG (Kubota, 2001; 

Couturier et al., 2004; Larson and Schwartz, 2006; Guhlke et al., 2007). 
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Because nuclear medicine imaging deals with the emission of radiation energy through 

photons and particles alongside with the detection of these quanta and particles in 

different materials, Monte Carlo (MC) simulations of radiation emission and detection are 

an important tool in nuclear medicine research. 

PET clinical data and image processing methods are also fields of intense interest and 

development. In order to evaluate the performance of new reconstruction methods or 

quantification algorithms, it is often relied on the use of simulated data and images, since 

these offer control of the ground truth. Monte Carlo simulations are widely used for PET 

simulation since they can take into account all the processes involved in PET imaging, 

from the emission of the positron to the detection of the photons by the detectors. 

Simulation techniques have become an important and indispensable complement to a 

wide range of problems that could not be addressed by experimental or analytical 

approaches (Rogers, 2006). 

Monte Carlo methods are numerical methods based on random variable sampling. This 

approach has been used to solve mathematical problems since 1770 and has been 

named “Monte Carlo” by Von Neumann (Assié et al., 2004) because of the similarity of 

statistical simulations to games of chance, represented by the most well known center for 

gambling: the Monte Carlo district in the Monaco principality. The general idea of Monte 

Carlo analysis is to create a model, which is as similar as practically possible to the real 

physical system of interest, and to create interactions within that system based on known 

probabilities of occurrence using, whenever suitable, random sampling of Probability 

Density Functions (PDFs). As the number of individual events (often called histories) 

increases, the statistical uncertainty in the simulation results decreases. Virtually, any 

complex system can in principle be modeled, if the distribution of events that occur in a 

system is known from experience or other means, and thus a PDF can be generated and 

sampled to simulate the real system.  

MC simulations have been proven to be a useful tool to study imaging characteristics 

and parameters that cannot be measured experimentally. The design of new PET 

scanners is one area that benefits from extensive simulations (Heinrichs et al., 2003; 

Braem et al., 2004), as well as improved data analysis and image reconstruction 

algorithms assessment  (Herraiz et al., 2006) and correction techniques (Levin, 1995), 

among other applications (Zaidi, 2000; Ay and Zaidi, 2006; Ortuño et al., 2006; Torres-
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Espallardo et al., 2008). Simulations also help to identify bottlenecks regarding count rate, 

and critical factors affecting resolution, sensitivity, etc. Indeed, MC methods make it 

possible to estimate properties of new scanners which cannot be easily determined 

experimentally, as well as to assess the change in performance of PET scanners induced 

by modifications in scanner characteristics (Zaidi, 1999). Furthermore, they facilitate the 

systematic study of factors influencing image quality, and the validation of correction 

methodologies for effects such as scatter, attenuation and partial volume, for improved 

image quantification, as well as the development and testing of new image reconstruction 

algorithms.  

Recently, the availability of powerful computers facilitated widespread use of PET  

simulation codes (Thompson et al., 1992; Briesmeister, 1993; Harrison et al., 1993; Baro 

et al., 1995; Kawrakow and Bielajew, 1998; Agostinelli et al., 2003). Based in GEANT4, 

GATE is widely used (Jan et al., 2004). SimSET and EIDOLON are other examples of MC 

codes (Zaidi et al., 1999).  

PeneloPET (España et al., 2009) is a MC simulator based on PENELOPE  (Salvat et 

al., 2008). PENELOPE is a Monte Carlo code for the simulation of the transport in matter 

of electrons, positrons and photons with energies from a few hundred eV to 1 GeV. It is 

then less generally aimed as GEANT4, but it suits well PET needs. It is fast and robust, 

and it is extensively used for other medical physics applications, particularly for dosimetry 

and radiotherapy (Sempau and Andreo, 2006; Vilches et al., 2006; Panettieri et al., 2007).  

PeneloPET has been developed in the Nuclear Physics Group of UCM (España, 2009) 

and validated as a powerful tool for preclinical PET simulation (España et al., 2009). 

PeneloPET simulates PET systems based on crystal array blocks coupled to photo 

detectors. The user can easily define radioactive sources, detectors, shielding and other 

parts of the scanner. All these components are configured by means of a few plain text 

input files. PeneloPET simulations are ready to run in a cluster of computers. While 

PeneloPET has been validated and employed to simulate preclinical scanners (España et 

al., 2009), here we report detailed comparisons of PeneloPET simulations to real data for 

clinical scanners (Abushab et al., 2011, 2012).  

Current clinical PET scanners include time-of-flight (TOF) capability. TOF information 

reduces noise and unwanted counts in the reconstructed images (Lewellen, 1998; Moses, 

2003; Conti, 2011). In order to achieve a spatial resolution better than 1 cm, a TOF 
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resolution of 66 ps would be required. While many commercial scanners still in use have a 

TOF resolution of the order of 1 ns (Moses, 2003), more modern PET/CT scanners have 

obtained TOF resolutions of the order of 500 ps (Surti et al., 2007; Jakoby et al., 2008; 

Bettinardi et al., 2011; Conti et al., 2011; Defrise et al., 2011; Mollet et al., 2011), and 

scanners under design or just introduced can lower the TOF figure down to 300 ps (Zaidi 

et al., 2011), which offer the opportunity of using TOF information to improve the quality of 

the reconstructed images (Conti et al., 2005). Indeed, employing TOF information, image 

background can be reduced. The capability of PeneloPET to include TOF properties of 

clinical scanners were also assessed (Abushab et al., 2011, 2012). 

Another developing area which is within the scope of this thesis is image reconstruction. 

PET images map the origins of photons emitted from the patient. If the PET scanner 

detects these two photons within a particular interval of time, called the coincidence 

window, it will record a line of response (LOR) that connects the points where the two 

photons were detected. The collection of LOR data is referred to as the projection data. 

There are two basic approaches to PET data reconstruction. One approach is analytic 

in nature and utilizes the mathematics of computed tomography that relates line integral 

measurements to the activity distribution in the object. These algorithms have a variety of 

names, including Fourier reconstruction and filtered back-projection (FBP). The second 

approach is to use iterative methods (i.e. Ordered Subsets Expectation Maximization 

(OSEM)) that model the data collection process in a PET scanner and attempt, in a series 

of successive iterations, to find the image that is most consistent with the measured data. 

FBP images are standard and require a moderate computational effort, whereas OSEM 

reconstructions create smoother images (Lartizien et al., 2003). The quantitative accuracy 

of OSEM is similar to that of FBP when the lesion is in a region of low background 

(Boellaard et al., 2001). In addition the 3D OSEM approach has btter resolution, which 

allows to resolve structures smaller than those obtained with FBP (Herranz, 2010). 

However, OSEM algorithms require many iterations through all individual LORs and 

voxels and, therefore, involve much higher computational cost than FBP. Programmable 

graphics processing units (GPUs) were proposed many years ago as potential 

accelerators in complex scientific problems, such as accelerating the compute-intensive 

parts of the reconstruction: forward and backward projection (Herraiz et al., 2011). The 

GPU can handle large data sets in parallel, working in single instruction multiple data 
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(SIMD) mode. In order to optimize the quantitative use of PET in clinical practice, data and 

image processing methods are also a field of interest and development. The evaluation of 

such methods often relies as we do in this thesis on the use of simulated data and images 

since these offer control of the ground truth.  

In the second part of this thesis, we used a 3D iterative OSEM code running on a GPU 

(GFIRST), developed at the Nuclear Physics Group of UCM (Herraiz et al., 2011). The 

main goal was to obtain a significant acceleration of the algorithm without compromising 

the quality of the reconstructed images. We adopted GFIRST and extended it for clinical 

PET reconstructions, and implemented further developments such as point spread 

function (PSF) based system response matrix (SRM), median filter, and TOF information. 

We used GFIRST and simulations to investigate the gain in image quality that can be 

achieved by including TOF information. Such investigations included comparison of signal 

noise ration (SNR), contrast, and noise. 

This thesis is embedded in one of the research lines carried out at the Nuclear Physics 

Group of the University Complutense de Madrid, whose objectives are to design, develop 

and evaluate new data acquisition systems, data processing, and reconstruction 

algorithms for PET imaging. This thesis will make heavy use of tools developed in the 

Nuclear Physics Group, such as PeneloPET simulations. This thesis contains also 

contributions in image reconstruction of clinical PET data. We extended GFIRST, to 

include PSF, median filter, and TOF. We investigated the gain in image quality that can be 

achieved using these extensions. The investigation focused on SNR and contrast in hot 

lesions (spheres of less than 15 mm in diameter), as well as background noise in 

reconstructed images, both with and without TOF.  

1.2. Goals of this thesis 
The main objective of this thesis is to extend the capabilities of the tools developed in 

the Nuclear Physics Group for PET imaging, so far intended for the preclinical arena, to 

clinical settings, and to validate these tools against clinical measurements. More 

specifically, the main ingredient that has been considered in this thesis is the time of flight 

(TOF) capability, which has been included in the simulations, and introduced in the 

reconstructions. The improvement in image quality derived from the use of TOF 

information is assessed. For this goal the role of simulations is paramount as one can 

easily understand. Indeed, for the previous preclinical developments performed at GFN, 
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abundant information from prototypes, phantom data, details of the electronics, test 

acquisitions were available. Nothing of this is readily accessible for clinical scanners. Thus, 

the quality of the reconstruction and data correction algorithms has to be assessed mostly 

with simulations. And to validate simulations for clinical scanners the first part of this thesis 

is devoted. During that work, we were lucky getting in touch and starting a collaboration 

with Bjoern Jakoby, scientist in charge at Siemens of the performance tests of the 

Biograph family of PET scanners. This is the main reason that our work was focused on 

Siemens Biograph PET/CT scanners.  

This thesis should pave the way for the translation of the wealth of experience in PET 

reconstruction and data handling gained by GFN, to the clinical arena. Indeed, the main 

objective of this thesis should be to obtain confidence on the validity in clinical settings of 

the PET tools for simulation and reconstruction developed at GFN, which should allow the 

GFN to contribute significantly to research on clinical PET. Actually we can say that this 

has happened. Thanks to a large extent to the work carried out in this thesis, GFN is 

collaborating with the Massachusetts Medical Hospital (Boston) in a project on clinical PET 

imaging for respiratory diseases, it is beginning to collaborate, together with the Laboratory 

of Medical Imaging (LIM) of Gregrorio Marañón Hospital (Madrid), in a project to improve 

PET images for lung cancer evaluation at Hospital Clínico (also in Madrid). GFN is also 

participating in an M+VISION project together with several M+VISION fellows based at 

MIT (Boston) to improve data acquisition on preclinical and clinical PET scanners. Thus 

we are anticipating that the main goal of this thesis has been accomplished. 

1.3. Thesis outline 
The thesis is organized as follows:  

Chapter 1 this chapter is an overview of PET and MC simulation, in addition to image 

reconstruction as well as the goals and outlines of the thesis.  

Chapter 2 reviews the basic physical principles of PET. The physics of the PET detector 

is described in some detail as well as data collection and data handling. An overview of the 

main characteristics of the Monte Carlo method are reviewed next, followed by a short 

description of image reconstruction methods and Fourier rebinning concepts, and a review 

of time-of-flight (TOF) PET.  

Chapter 3 provides a detailed overview of PeneloPET and its features and capabilities, 

in addition to a description of the computer resources used for this work. Moreover, the 
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geometry of the scanners is reviewed, the procedure to evaluate the performance of the 

scanners (i.e. sensitivity, NEC, SF, spatial resolution and TOF), and factors influencing it 

are stated. Results and discussion of the validation of PeneloPET against measurements 

for Biograph scanners, as well as conclusion are also included in the chapter. 

Chapter 4 contains a description of GFIRST as well as the implementation of PSF, 

median filter and TOF information into the algorithm. A description regarding the image 

quality NEMA phantom, normalization, gap filling and attenuation correction is included. 

Furthermore, it contains an assessment of methods, results, and discussion of SNR, 

contrast and noise. 

 Chapter 5 summarizes and describes the conclusions drawn from the research. 
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2. Background  
2.1. Medical imaging  

The past few years have seen the transition of PET from research domain into 

mainstream clinical application, particularly for oncology (Meyer et al., 2006; von 

Schulthess et al., 2006). The emergence of PET as a functional imaging modality for 

diagnosis, staging, therapy monitoring and assessment of recurrence in cancer has led to 

increasing demand of this imaging technology (Townsend, 2006). It is important to 

recognize that functional imaging modalities such as PET, in some instances, may provide 

earlier diagnosis and more accurate staging than conventional anatomical imaging with 

computed tomography (CT).  

The combination of PET imaging with CT (PET/CT) allows for easy and fast co-registration 

of these two established modalities offering way more than the sum of the parts. PET/CT 

scanners provide accurate spatial localization of functional abnormalities and, conversely, 

functional assessment of abnormalities identified on anatomical scans. 

 

2.2. Principles of PET I (Physics) 

2.2.1. Introduction  
PET (Cherry et al., 2003) is a technique used to create images that shows physiological 

function of certain organs. A very small amount of a labeled compound (called 

radiopharmaceutical or radiotracer) is introduced into the patient usually by intravenous 

injection and after an appropriate uptake period, the concentration of tracer in tissue is 

measured by the scanner. During its decay process, the radionuclide emits a positron 

which, after travelling a short distance (the positron range) (Cal-González et al., 2009), 

encounters an electron from the surrounding environment. The two particles "annihilate" 

each other resulting in the emission in opposite directions of two gamma rays of 511 keV. 

These two photons may be detected in coincidence and their line of response (LOR) can 

be identified (Figure 2.1). The gamma rays are registered by a detector to produce an 

image of the radiotracer distribution that correlates with the functional metabolism of the 

organ under study. 
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Figure 2.1.   Basic principle of PET scanner and data processing (Steinbach, 2011)  
 

2.2.2. Beta decay 

One common method by which nuclei with an excess of protons may decay is through 

positron emission (also known as β+ decay). Beta particles are fast electrons or positrons 

produced in the weak interaction decay of neutrons or protons in neutron or proton rich 

nuclei (Cherry et al., 2003). In a neutron-rich nucleus, a neutron can transform into a 

proton via the process 

    en p e n+ -‐Æ + +                                            (2.1) 

where an electron and an antineutrino are emitted. The daughter nucleus now contains 

one extra proton so that its atomic number Z  is increased by one. This can be written as 

 ( ) ( 1, )Z A Z A e n-‐+ Æ + + +                                                 (2.2)  

whereas in proton-rich nuclei, a positron and neutrino are emitted in the process 

 p n e n+Æ + +                                                 (2.3) 

The corresponding decay is written as 

              ( ) ( 1, )Z A Z A e n-‐+ Æ -‐ + +                                               (2.4) 

The daughter nucleus now contains one proton less; therefore the atomic number is 

decreased by one. There is also a third process called electron capture (Krane, 1987). In 

this process an atomic electron close to the nucleus is captured by the nucleus 

                                                   p e n n-‐+ Æ +                                                            (2.5) 

One of the characteristic of the b-‐ decay is the continous energy spectrum of the 
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b particles, due to energy sharing between b particles and the neutrino. Typical energy 

spectra are shown in Figure 2.2. 

 
Figure 2.2. Experimental b-‐ spectra obtained from decaying 64Cu. b-‐  particles are affected by the electric 
field of the positively charged nuclei and thus the energy spectrum is shifted towards lower energies. 
b + particles, on the other hand, are repelled by the nuclei so the energy spectrum it is shifted towards higher 
energies (Krane, 1987). 
 

The positron that is ejected following b + decay has a very short lifetime in electron rich 

material such as biological tissue. It rapidly loses its kinetic energy in inelastic interactions 

with atomic electrons in the tissue, and once most of its energy is dissipated, it will 

combine with an electron. The combined mass of the two particles is almost instantly 

converted into energy, owing to energy-momentum conservation, in the form of two 

oppositely moving photons of 511 KeV of energy. This is referred to as an annihilation 

reaction.   

The annihilation process forms the basis for PET imaging. A PET scanner is designed 

to detect and locate simultaneous annihilation photons that are emitted following decay of 

a radionuclide by positron emission.  

The detectors are designed to see as many annihilation photons as possible and to 

locate the interaction point within the detector with certain spatial precission. Each detector 

is in electronic coincidence with other detectors so lines of response (LORs) across the 

object can be drawn at many different angles. Typically, 10
6
 to 10

9
 events (detections of 

annihilation photon pairs) are needed in a PET scan to reconstruct a statistically 

meaningful image of the distribution of radioactivity in the body (Bailey, 2005a; Townsend, 

2006). A conceptualized diagram of this process is shown in Figure 2.3. There are several 
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effects in PET imaging systems that lead to errors in determining the line along which a 

positron emitting radionuclide is to be found. These effects place some finite limits on the 

spatial resolution in PET and manifest themselves as a blurring of the reconstructed 

images.  

 

 
Figure 2.3. In PET, each detector generates a timed pulse when it registers an incident photon. These pulses are 
sent to a coincidence circuitry, and if they fall within a short time-window, they are deemed to be coincident. A 
coincidence event is assigned to a LOR joining the two relevant detectors  

The first of these effects is positron range. As shown in Figure 2.4a, positron range is 

the distance from the site of positron emission to the site of its annihilation. This is one of 

the main limiting factors to the spatial resolution of PET (Levin and Hoffman, 1999).  

Positron range depends on both the energy of the emitted positrons and on the 

surrounding material. The distance in the normal direction to the location of the decaying 

atom to the line defined by the annihilation photons is the effective positron range or 

positron range blurring, relevant for PET projection data (see Figure 2.4a). Because 

positrons are emitted with a range of energy and follow a tortuous path in tissue, the 

positron range is a non-Gaussian distribution as described by Derenzo  (Derenzo, 1979) 

and Levin and Hoffman (Levin and Hoffman, 1999). Recently several works study the 

issue of positron range (Cal-González, 2010; Cal-González et al., 2012; Larson and 

Schwartz, 2006; Levin and Hoffman, 1999; Palmer et al., 2005; Sánchez-Crespo and 

Larsson, 2006). Derenzo (Derenzo, 1986) proposed an effective method to introduce 

positron blurring in both forward and backward projections in FBP reconstruction. 

Recently, new methods to remove positron range have been developed (Cal-González et 

al., 2011; Fu and Qi, 2008). 

The second effect comes from the fact that positron and electron are not completely at 

rest when they annihilate. The small net momentum of these particles means that the 



Chapter 2-                                                                                                                Background 

 13 

annihilation photons will not be at exactly 180o and will, in fact, be emitted with a 

distribution of angles around 180o. This is known as non-colinearity, and is illustrated in 

Figure 2.4b.  

 
                               (a)                  (b) 

 
Figure 2.4. Scheme representing the definition of positron range. From its emission, the positron follows an 
erratic path until the annihilation process (a). Non-colinearity is independent of radionuclide, and the error 
introduced depends on the separation of the detectors. This is due to the fact that the annihilation does not take 
place exactly at rest, as the electrons are at room temperature and thus have some momentum. Thus the two 
annihilation photons are not emitted exactly at 180o, but with a slight deviation. Two detectors detect these 
photons and assign the event to a straight line, which is not the original annihilation line (b). 
 

 The exact amount of non-colinearity for annihilation γ photons traveling in water or in 

soft tissues is however not well established. Zanzonico (Zanzonico, 2004), refer to Berko 

(Berko and Hereford, 1956) and say that the deviation qD  in Figure 2.4b, can go up to 

0.5o. More recent studies exist for different metals, but not for water or most other 

materials relevant to PET (Damiano, 2011). Ollinger and Fessler (Ollinger and Fessler, 

1997) assumed that the magnitude of the deviation is one degree or less. Humm (Humm 

et al., 2003) made an approximated calculation by considering just thermal motion of the 

particles and the Fermi moment, this would give 180o ± 0.25o. In view of the lack of solid 

experimental or theoretical onstrains on the non-colinearity, most PET studies assume a 

distribution of emitted angles roughly Gaussian in shape, with a FWHM of 0.5 (Cherry et 

al., 2003; Humm et al., 2003; Wernick and Aarsvold, 2004; Zanzonico, 2004) and this also 

done in  Pene loPET. 

Assuming an exact back-to-back emission the annihilation photons results in an error in 

locating the LOR. This error increases linearly as the diameter of the PET scanner 

increases (Bailey, 2005b). A study of the influence of such non-colinearity on PET image 

spatial resolution can be found in (Sánchez-Crespo and Larsson, 2006). 
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2.2.3. PET radionuclides 

Some radionuclides employed in PET, 13N, 11C, and 15O, are commonly occurring 

biologically relevant elements, which enable the radio-labeling of a wide variety of organic 

molecules. These radio-labeled molecules are chemically equivalent to their stable counter 

parts, and follow the same metabolic path providing valuable information about biological 

processes. The short half-life (1 to 20 min) of these radionuclides, however, requires a 

medical cyclotron on site.  

Another approach in PET is to use analogs, modifying the original compound and to 

certain extent its biological role. For example, replacing one of the hydroxyl (OH) groups 

on the molecule of glucose with 18F yields a glucose analog, fluorodeoxy-glucose (FDG), 

which only undergoes the first step in the metabolic pathway of glucose, becoming trapped 

and accumulated in the cell in proportion to glucose metabolism (Cherry et al., 2003).  

2.2.4. Interaction of gamma rays with matter 
The interaction of gamma rays with matter takes place mainly via the following effects: 

Photoelectric absorption  

The incident photon is completely absorbed by an atom and its energy (Εγ) is 

transferred, usually to an inner shell electron (Knoll, 2000) ejecting it from the atom with 

energy equal to the energy of the incident gamma ray diminished by the binding energy 

( boundE ) of the electron: 

e boundE E Eg= -‐                                           (2.6) 

An outer-shell electron then fills the inner-shell vacancy and the excess energy is 

emitted as an X-ray.  

Compton scattering 

In Compton scattering the incident photon transfers part of its energy to a lightly bound, 

outer shell electron or to a free electron, ejecting it from the atom. Upon ejection this 

electron is called a Compton electron. The photon is not fully absorbed but it is scattered at 

an angle (θ ) that depends on the amount of energy transferred from the photon to the 

electron. The scattering angle can range from nearly 0º to 180º. Imposing conservation of 

momentum and energy leads to a simple relationship between the energy of the original 

photon (Εγ), the energy of the scattered photon (Εsc), and the angle through which it is 

scattered, (θ ) (Knoll, 2000). 
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This gives rise to the Compton edge in the energy spectrum of mono-energetic gamma 

rays for finite detector size (Knoll, 2000). 

Pair production 

In the pair production interaction, the γ ray is converted to an electron-positron pair.   

e + eg -‐ +Æ                                               (2.9) 

This pair-production is not possible in vacuum due to momentum and energy 

conservation, but it is possible in matter. Energy carried by the γ photon (above 1.02 MeV) 

goes to kinetic energy shared by the positron and electron. The positron and electron 

produced will undergo interactions with material, and radiation will come from the positron 

when it annihilates. 

 

2.3. Principle of PET II (Detectors)  
Detection of gamma radiation is a common procedure in experimental nuclear physics. 

The great majority of commercial PET scanners available nowadays use scintillation 

crystals optically coupled to photomultiplier tubes for converting γ photons into an electrical 

signal. As radiation crosses the scintillator (see next section), the crystal becomes excited, 

causing the emission of visible light. This light is transmitted to the photomultiplier where it 

is converted into a current (Melcher, 2000; Wernick and Aarsvold, 2004). Such electrical 

signal then drives a pre-amplifier and subsequent shaping circuitry and finally enters the 

digital processing stages. 

2.3.1. Scintillators 

Scintillation detectors are widely used for gamma ray detection for most current clinical 
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PET scanners. These detectors consist of a dense crystalline scintillator material that 

serves as an interacting medium for γ rays and which emits visible light when energy is 

deposited in it.  

In general, a scintillator should be fast, dense, have high light output and high atomic 

number so that a large fraction of photons undergo photoelectric absorption and, further, it 

must be inexpensive to produce. Some important properties of various scintillation 

materials are summarized in Table 2.1. Here the density of the scintillator is directly related 

to the stopping power of high energy photons, and therefore it is an important factor 

determining the necessary crystal thickness which affects the intrinsic spatial resolution of 

PET scanners.  

Table 2.1. Properties of some scintillators used in PET detectors. Note that some of these specifications are 
subject to change as developers change dopants and trace elements in the scintillator growth. For example, the 

light output, peak wavelength, decay time and density for LYSO vary some what for different versions of the 
basic scintillator. Adapted from (Lewellen, 2008)   

To obtain better spatial resolution most systems use segmented scintillators that try to 

minimize the uncertainty in the location of the interaction. Current high resolution PET 

scanners employ arrays of pixilated scintillator crystals (Casey and Nutt, 1986). Scanners 

with blocks made of continuous crystal are less frequently used for high resolution 

scanners (Joung et al., 2004). Taking this into account, a high light output of the scintillator 

is then very desirable as it improves energy resolution and thus the identificacion of the 

crystals based on center of energy algorithms. For example, with BGO, block detectors 

with up to 16 crystals per Photomultiplier tube  (PMT) can be used, but with LSO, more 

than 144 crystals can be coupled to a PMT (Melcher, 2000). 

 NaI(TI) LSO LYSO GSO BGO LaBr3 

Effective atomic number (Z) 53 66 60 59 74 47 

Density (g/cm3) 3.67 7.4 7.1 6.7 7.1 5.3 

Attenuation coefficient (cm-1) 0.34 0.87 0.86 0.62 0.92 0.47 

Refractive index 1.85 1.82 1.81 1.85 2.15 1.88 

Light yield (% NaI(Tl)) 100 75 80 41 2.15 160 

Peak wavelength (nm) 410 420 420 430 480 370 

Decay constant (ns) 230 40 41 56 300 25 

Hygroscopic Yes No No No No No 
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2.3.2. Photomultiplier tube (PMT)

A PMT is a device that produces a pulse of electrical current when stimulated by very 

weak light signal, such as those produced by a scintillation crystal. The PMT is made of a 

vacuum glass tube, which houses a photocathode, anode, and several dynodes (Knoll, 

2000). Light from the scintillator is transmitted through the glass entrance window of the 

PMT and excites the photocathode.  

The photocathode is made from a thin layer of material that can easily liberate electrons 

as energy is deposited in it. Each light photon from the scintillator has roughly a 15% to 

25% chance (depending on wavelength and photocathode material) to liberate an 

electron. This probability is called the quantum efficiency of the PMT.  

 
Figure 2.5. basic elements of a PMT. Adapted from (Powsner and Powsner, 2008) 
 

A high potential difference accelerates the electron from the photocathode and directs it 

to strike a positively charged electrode called the first dynode. This dynode is also coated 

with an emissive material that readily releases electrons, and each impinging electron has 

acquired sufficient energy to release on the order of 3 to 4 secondary electrons from the 

dynode. These electrons are in turn accelerated to the second dynode and so forth, 

ultimately creating an avalanche of photoelectrons. After 10 stages of amplification, each 

initial electron has created on the order of 10
6
 electrons, which, occurring over a period of 

a few nanoseconds, lead to an easily detectable current. Figure 2.5 skeches a PMT (Knoll, 

2000). Other photodetectors are becoming common in PET, such as avalanche 

photodiodes and Silicon Photomultipliers (España et al., 2010; Schaart et al., 2009) 

2.3.3. Electronics 
Pulse processing 

When a scintillation detector detects a photon, the electrical pulse generated by the 

PMT is used to generate a timing signal and energy/position information. Timing 

information is obtained, in the more classical designs, by passing the pulse through a 
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constant fraction discriminator (CFD), which generates a digital pulse when the signal 

reaches a constant fraction of the peak pulse height. This pulse is then used in the 

coincidence circuitry (Knoll, 2000).  

Usually there is a lower energy-level discriminator (LLD), and an upper energy-level 

discriminator (ULD) which may be used to reject pulses below or above particular values. 

Optimization of the LLD value is discussed in detail by (Badawi et al., 1996). The LLD can 

be used to discriminate against scatter, as scattered annihilation photons have lower 

energy than those which are not scattered.  

Not all scatter can be removed this way, as many scattered photons have energy quite 

close to 511 keV and the energy resolution of typical detector systems is insufficient to 

distinguish them from unscattered photons. The ULD may be used to reject some events 

where more than one photon is incident on the block-detector at the same time. According 

to (Grootoonk et al., 1996; Shao et al., 1994) LLDs and ULDs have been used to divide 

the acquired data into different energy-windows for analysis.  

The events triggered in a detector are fed into coincidence units that test whether each 

event is close enough in time to other events from other detectors, so that they can be 

considered as coincidence events (see next section). The time of flight taken by gamma 

photons from the positron annihilation point to the detectors is of the order of hundreds of 

picoseconds for clinical scanners. Scanners with time-of-flight (TOF) capability have been 

developed since the 80ts (Allemand et al., 1980; Moszynski et al., 2006; Mullani et al., 

1981). 

2.3.4. Classification of detected events in PET  

The detected events in PET can be grouped into five categories: true, random, 

scattered, single and multiple events (Figure 2.6). Among them, true, random, and 

scattered events are known as prompts, i.e., coincidence events.  

From an ideal PET perspective, only true event are not spurious. The remaining result 

from undesirable physical processes. Thus, for a correct image reconstruction it is 

necessary to identify the true events and adopt a strategy to handle the other events, 

either by performing some sort of correction or simply by discarding them. In this section 

the origin of these events is described, while in the next section the strategies for handling 

them will be presented.  
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Figure. 2.6. Different types of detected events in PET: (a) true, (b) multiple, (c) single, (d) random and (e) 
scattered (adapted from (Cherry et al., 2003)). 
 

A true event occurs when a single positron annihilates and both of the gamma rays are 

detected without neither of them scattering in the object being scanned. However, due to 

limitations of the detectors used in PET and the possible interaction of the 511 keV 

photons in the body before they reach the detector, the coincidences measured are 

contaminated with undesirable events which includes scattered, random (Figure 2.6a), and 

multiple coincidences .  

Multiple events result from the detection, within the same coincidence window, of three 

or more gamma	 photons (Figure 2.6b). Since there is an ambiguity in deciding which 

photons make a valid pair, these events are usually discarded by the system (Bailey, 

2005a).  

Single event; corresponds to the detection of a single photon which is unpaired within 

its coincidence window (Figure 2.6c). 

A random coincidence is the result of two positron annihilations taking place within the 

same coincidence window (Figure 2.6d). If the two events occur close enough in time, then 

the coincidence electron will register the event as a coincidence (or prompt).    

Random events can be reduced either by choosing the scanner geometry so that the 

field of view (FOV) for single events is reduced (Badawi et al., 2000), or by reducing the 
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time coincidence window of the scanner, up to the limit that the time resolution of the 

system allows, without losing good counts. Indeed the random event count rate is a 

function of the number of decays per second. The random count rate between two 

detectors, i  and j , ijR , is given by (Bailey, 2005a; Cooke et al., 1984; Hoffman et al., 

1981): 

2ij i jR r rt=                                                     (2.10) 

where ir  and jr  are the single event rates for detectorsi and j , respectively, (Oliver and 

Rafecas, 2008) and 2t is the width of the coincidence timing window (Knoll, 2000). Since  

i jr r rª =  then the random event rate increases approximately proportionally to 2r . 

When the dead time is small, this means that the random event rate is roughly proportional 

to the square of the activity concentration. It is also important to note that, unlike the trues, 

random coincidences can arise from activity outside the FOV (Spinks et al., 1998). Thus, 

random coincidence count rate depends in a complicated way on both source and detector 

geometry (Cherry et al., 2003), and, according to Badawi (Badawi et al., 2000) is strongly 

dependent on both axial FOV and detector ring diameter. From Equation (2.10) it is 

possible to verify the following: 

• The greater the total amount of activity used in a study, the higher the ratio of 

random-to-true coincidence rates, due to the quadratic dependence of the random 

coincidences. 

• The random rate decreases in proportion to the width of the coincidence window. 

In actual PET scanners, the random-to-true ratio ranges from about 0.1 - 0.2 for brain 

imaging, to more than 1 for applications where large amounts of activity exist outside the 

FOV (Cherry et al., 2003). One must also notice that in previous expression it is assumed 

that the singles to coincidences rate is much larger than one, so that the singles rate is 

almost mostly due to single events with no significant contribution of singles from 

coincidences. Otherwise, more compelx expressions have been derived (Oliver and 

Rafecas, 2010, 2008). 

A scattered event occurs when one or both annihilation photons detected in 

coincidence have undergone a Compton interaction (Figure 2.6e). Due to the relatively 

poor energy resolution of most PET detectors (see section 2.6.1), there are scattered 

photons whose energy fits within the energy window operated by the scanner. Thus, when 

both photons (scattered and unscattered) are detected in coincidence, they will be treated 
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as a prompt. If a photon suffers Compton scattering, it will be deflected from its original 

trajectory and will be no longer back-to-back with the other photon produced in the same 

annihilation. This may significantly degrade both image quality and quantitative accuracy 

(Wirth, 1989). 

Scattered photons are so more relevant as they can be coming from outside the FOV 

(Ferreira et al., 1998; Sossi et al., 1995) or even due to scatter by physical parts of the 

scanner, such as the gantry or others. External end-shielding (Hasegawa et al., 2000) and 

septa between planes (Thompson, 1988) were suggested in order to screening the 

radiation outside the FOV and reducing the likelihood of accepting photons scattered 

inside the FOV. 

In 3D mode the number of scattered photons is much higher than in 2D mode; the 

scatter fraction, the ratio of scattered events to the total recorded coincident events 

(Thompson, 1988) is about 10% in the latter case and 30% - 40% in 3D mode (Cherry et 

al., 2003). The scatter-to-true rate does not depend on the amount of activity administered, 

because both the scatter and the true coincidence rates increase linearly with this 

parameter. It also does not depend, in practice, on the width of the coincidence time 

window (Cherry et al., 2003). In clinical studies, the scatter-to-true coincidence ratio ranges 

from 0.2 to 0.5 for brain imaging and from 0.4 to 2 for abdominal imaging (Cherry et al., 

2003). The scatter fraction (SF) (see section 2.6.4) was found to be strongly dependent on 

the detector ring diameter, but only weakly dependent on the axial FOV (Badawi et al., 

2000). 

 

2.4. Data acquisition  
The end goal in PET studies is to produce an image, from which diagnostic or 

quantitative information can be derived. This information can be as simple as quantitative 

comparison of activity concentration in different tissue regions or more complex biologic 

parameters such as metabolic rate of gene expression. The information that is to be 

extracted from the image will dictate how PET data are collected (Wernick and Aarsvold, 

2004).  

In this section we will discuss the process of collecting data and several possibilities for 

performing such collection, such as 2D mode and 3D mode and list mode. We will also 

discuss strategies for data storage, such as sinograms and projections, and 
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Michelograms. 

2.4.1. 2D and 3D mode data acquisition 

Septal rings can be used to prevent photons coming out of the detector ring plane from 

reaching the detectors. This improves resolution by reducing the amount of scatter from 

photons originating outside the plane of one ring of crystals. The sensitivity of the scanner 

is reduced, however, because a significant fraction of true coincidence events are rejected. 

Removal of the septa will increase sensitivity and may decrease resolution if effective 

scatter corrections are not used. Scans obtained with the septa in place are called two-

dimensional (2D) scans. Scan without septa is called three-dimensional (3D). The 3D 

configuration permits coincident registration of cross-plane events, those in which the two 

511 keV photons are detected in different rings. Septa reduces also the number of random 

events.  

An important concept behind the distinction between the 2D and 3D acquisition modes 

is the transaxial plane. A transaxial plane is a plane perpendicular to the scanner axis. So, 

neglecting the finite thickness of a ring, a transaxial plane can also be identified as the 

plane within which lies a detector ring. This means that along the direction of its axis, the 

scanner can be viewed as a stack of transaxial planes, each one corresponding to a 

detector ring.  

According to the concept introduced in the former paragraph, the difference between 

2D and 3D acquisitions can be stated as follows: in 2D acquisitions data are collected for 

LORs that are within the same transaxial plane (each ring can be treated separately). In 

3D acquisition mode, in addition to transaxial planes, data are also acquired for LORs 

connecting detector elements in different rings: within oblique LORs, corresponding to 

polar angles different from zero. Thus, 3D mode contains all the information of a 2D 

acquisition, plus the information coming from the oblique LORs. (Bailey, 2005a; Fahey, 

2002). Nowdays 2D acquisitions are sldom used in clinical PET scanners. One of the 

problems of 3D acquestiones is the huge size of the data collected, hence methods of 

reduction of the size of data collected in 3D mode are employed. These are explained in 

section 2.4.4.  

2.4.2. Sinogram and projection  

Sinograms and projections are alternate methods for storing and viewing raw PET data. 

Projection presents sets of parallel LORs at a specific angle φ (Bailey, 2005a; Defrise et 
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al., 2005).  

    ( , ) ( , ) rP s f x y dyf
•

-‐ •

= Ú                                     (2.11) 

Where ( , )f x y  is a two-dimensional representation of the activity distribution, s  is the 

radial coordinate, and yr  is the transversal direction coordinate. 

 
Figure 2.7. The projections of a point source at different angles (left) are represented with a sine curve in a 
sinogram representation of the data acquired (Bailey, 2005). 
 

The projections from all angles can be arranged in a matrix. Because a point source will 

be represented by a sine curve in this matrix representation (see Figure 2.7), it is called a 

sinogram (Bendriem and Townsend, 1998; Defrise et al., 2005). Sinograms are the basis 

of many image reconstruction schemes (Bendriem and Townsend, 1998). 

2.4.3. List mode 

Storing information from the prompt events in order of occurrence in the acquisition 

system is one way to store the measured coincidences for further processing. In list mode 

format, each coincidence event is stored sequentially in a file containing the detection 

position in each detector, as well as the energy and timing information of the two photons 

(Bal et al., 2006). In addition, gantry information such as count rate and time information, 

as well as external data (e.g. gating and patient motion information) can be inserted into 

the list mode stream in the form of tag words (Byrne, 2001; Parra and Barrett, 1998).  
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Figure 2.8. A 3D PET sinogram contains the 2D direct sinograms and all oblique sinograms (a). Axial mashing 
may be performed to reduce the 3D PET data size (b). The “span” parameter determines the number LORs 
which will be combined. 

Stored event packets are processed afterwards, and transformed into sinogram 

datasets or LOR histograms (Kadrmas, 2004), while the timing information can be 

analyzed, and the data set can be split into different time frames. Figure 2.8a shows the 

3D PET sinogram as a combination of 2D direct and oblique sinograms. If the scanner has 

n rings, information will be available for n2 different planes and, thus, there are n2 

sinograms in the Michelogram (see next section). Therefore, 3D PET data size increases 

rapidly with the number of rings. To reduce the size of 3D PET data, lines of response are 

adjacent often combined in the axial direction as shown in Figure 2.8b. 

2.4.4. The Michelogram 

The Michelogram is a way of dealing with the axial sampling of PET data, devised by C. 

Michel (Bendriem and Townsend, 1998). The Michelogram is used to illustrate the amount 

of axial data combined. A Michelogram is a grid combined with two axes, each one with a 

number of unitary marks equal to the number of rings in the scanner (see Figure 2.9). 

Each point in the grid of the Michelogram corresponds to one sinogram between two rings. 

The first ring in one of the extremities of the scanner is ring zero, and the other rings are 

sequentially numbered. After michelogramming of the data, it is possible to reduce the size 

of the 3D mode data as mentioned above, combining several LOR adjacent in the axial 

direction (axial mashing) as shown in Figure 2.8b.  
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Figure 2.9. Three examples of Michelograms for a 8-ring scanner corresponding to three different acquisitions: 
2D acquisition (a), 3D acquisition without mashing (b), and 3D acquisition with “mash” (c), where the span is 5 
(2 + 3) and maximum ring difference (MRD) is 7 (8-1). Axial location is along the bottom left to top right 
diagonal direction (Defrise et al., 2005) 
 

Figure 2.9 shows three different Michelograms corresponding to three different types of 

acquisitions. The Michelogram in Figure 2.9a represents a 2D acquisition; coincidences 

are allowed just for LORs inside each transaxial plane (each ring is exclusively in 

coincidence with itself), so points are along the diagonal. Figure 2.9b is for a 3D acquisition 

with no restrictions, i.e., any ring can be in coincidence with any other.  

The acquisition represented by the Michelogram in Figure 2.9c corresponds to a 3D 

acquisition with mash, a group of planes with the same axial position and neighbouring 

values of ring differences mashed upon one single plane. Thick lines connecting points in 

the sinogram describe the mashing data that are reassigned to the points in the thin lines. 

Indeed, this strategy leads to bands, or segments, in the sinogram. The intersection of the 

diagonal line at the center of the segment with each of the mashing lines indicates the 

axial position of the corresponding plane upon which data have been added. If such a 

point of intersection is not over a grid point, the scanner axis crosses the plane not within a 

real ring, but in a point halfway between two adjacent rings. Whenever the mashing 

strategy is adopted, there is also another keyword: span.  

The span determines the number of axial LORs which will be combined together as 

illustrated in Figure 2.8b. Here, the span is the sum of the numbers of combined LORs in 

odd and even planes, that is, 5 (2+3) in this example (points connected by red lines in 

Figure 2.9c). The maximum ring difference (MRD) is used in this context, which defines 

the maximum allowed ring difference. Data acquired between two rings, where their ring 

difference exceeds the MRD are discarded (Defrise et al., 2005; Fahey, 2002). 
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2.5. Corrections 
The projection data acquired are affected by a number of factors, namely variations in 

detector efficiencies, photon attenuation, random coincidences, scattered coincidences, 

dead time, and parallax error. A large number of methodologies to correct these sources of 

error, their relative merits and impact on the quantitative accuracy of PET images, can be 

found in (Cherry et al., 2006, 2003; Wernick and Aarsvold, 2004). Among the corrections 

mentioned above, one of the most important ones is attenuation, which can affect both the 

visual quality and the quantitative accuracy of PET data (Kinahan et al., 2003). This 

section is devoted to the description of some corrections applied to data before image 

reconstruction. 

2.5.1. Attenuation 

Attenuation has the largest effect on the central regions of the patient. Thus, attenuation 

correction makes easier to find lesions that are more central in the patient. The 511 keV 

annihilation photons originating from different locations in the body are attenuated by 

tissue, as they traverse different thicknesses to reach the detector pair in coincidence, thus 

reducing the number of photons detected in each LOR. Attenuation of the signal from a 

given LOR can be corrected either by a direct measurement or using a mathematical 

model, or a combination of the two, if the material properties of the object are known 

(Huang et al., 1979).  

In medical imaging, the attenuation coefficient reflects, essentially, the sum of the 

probabilities associated with the photon interacting by photoelectric absorption and 

Compton scattering. Since PET imaging occurs at 511 KeV, photon attenuation is mostly 

determined by Compton scattering (Kinahan et al., 2003). 

The attenuation probability depends exponentially on the attenuation coefficient (μ) of 

the crossed material and the length travelled inside it. As both annihilation photons travel 

along the same line, the total length is always the same. Thus, if the length travelled by 

one photon is x and the total length is D, the number I of non attenuated coincidences is 

given by (Bailey, 2005a): 

         ( )
0 0

x D x DI I e e I em m m-‐ -‐ -‐ -‐= =                                   (2.12) 

If the source is positioned outside the body, the probability terms are 0e  and De m-‐  for the 

near and far detectors respectively (where D is the total thickness of the body), and the 

number of non attenuated coincidences is: 
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0
0 0

D DI I e e I em m-‐ -‐= =         (2.13) 

which is the same as it would be obtained from an internal source. Therefore, the problem 

of correcting for photon attenuation in the body is equivalent to the determination of the 

probability of attenuation for all sources lying along every LOR (Bailey et al., 2004). By 

comparing the counts rate from the external (transmission) source with unattenuated count 

rate from the same source when the patient is not in tomograph, it is possible to determine 

the probability of attenuation for each LOR.  

Further, in combined PET/CT systems, it is possible to use CT images of the object and 

proceed with a conversion method (such as segmentation or scaling), to convert the 

Hounsfield units into attenuation correction factors (Abella et al., 2012; Bailey, 2005a; 

Kinahan et al., 2003; Townsend, 2006). In this thesis, this method will be used in order to 

correct for attenuation.  

2.5.2. Random Coincidences  

As explained in section 2.3.4, random coincidences are due to the finite width of the 

coincidence timing window. The most evident consequence of random events on a 

reconstructed image is the introduction of a relatively uniform background which reduces 

contrast and distorts the relationship between image intensity and activity of the object.  

Narrowing the coincidence timing window to avoid randoms can be part of the solution, 

but it must take into account the trade-off between minimizing the number of accepted 

randoms and the loss of true coincidences, as the time resolution of the detectors is finite. 

Efforts have been made to minimize random events by using faster electronics and shorter 

time window. Yet, in general corrections are needed to remove random counts from the 

acquisition and to improve image contrast. 

Random count rates can be estimated from singles count rates for a given detector pair 

and coincidence time window in different ways (Cooke et al., 1984), one of these way was 

shown in Equation (2.10). In principle, the number of random events for every detector pair 

in the scanner may be estimated and removed. To implement this method, the data 

acquisition system should be able of recording not only coincidences but also the singles 

rate for each detector element. This is available in clinical scanners. One has to keep in 

mind that the correction for randoms cannot be done on an event-by-event basis, because 

a random event is indistinguishable from a true event for the coincidence circuit. This, in 

the end, increases the statistical uncertainty of the true coincidence rate (Cherry et al., 
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2006). 

2.5.3. Normalization  

PET scanners have a large number of detectors arranged in blocks and coupled to 

multiple PMTs (Cherry et al., 2003). Because of variations in the gain of PMTs, 

unaccuracies/tolerances in detector block building, physical variation of scintillator 

efficiency (Bailey, 2005a), etc., detection sensitivity of a detector pair varies from pair to 

pair, resulting in non-uniform count rates along in principle equivalent detector pairs. 

Information on these variations is required for the reconstruction of quantitative, artifact 

free, images. The method of correcting these variations is often known as normalization 

(Badawi and Marsden, 1999; Hoffman et al., 1989). 

Normalization is frequently accomplished by exposing all detector pairs to a positron 

emitter source that generates two 511 KeV gamma-rays with a very uniform activity 

concentration and distribution to grant uniform exposure of all LORs. Data are collected for 

all detector pairs, and normalization factors are calculated for each pair by dividing the 

average of counts of all equivalent LORs by the individual detector pair count (Bailey, 

2005a; Cherry et al., 2003; Zanzonico, 2004). This process is known as direct 

normalization. The main problem of this method is that it requires accumulation of a large 

number of counts in order to achieve an acceptable statistical accuracy for each LOR. This 

method is most often used in this thesis. 

A different approach is to split normalization into different components and treat each 

one of them separately: this is the so-called component-based model for normalization. 

The normalization is factored into detector efficiency and spatial distortion correction, 

intrinsic detector efficiency, geometric factors, crystal interference, dead time factors, etc. 

(Badawi and Marsden, 1999). Detailed models based on this approach can be found in the 

following references:  (Badawi and Marsden, 1999; Badawi et al., 2000; Ollinger, 1995; 

Townsend, 2006). 

2.5.4. Scatter correction 

Scatter is part of the attenuation phenomena, wherein photons deviate from their 

original directions and contribute to inappropriate LORs (Segars et al., 2008). This results 

in false counts. The goal of the scatter correction is the removal of these false counts. The 

removal of scatter approximates a narrow beam geometry, which is the condition assumed 

for the attenuation correction. Therefore, it is important that scatter correction should be 
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performed before correcting for attenuation. 

Scatter corrections are especially important since the fraction of scattered events in 

PET is usually very high, especially in 3D mode and it is a strong cause of contrast loss 

(Saha, 2010; Zaidi and Koral, 2006): for a scan of the abdomen, it can be 60% to 70% 

(Cherry et al., 2003).  

Scatter contribution increases with density and depth of body tissue, density of detector 

material, activity in the patient, and energy window width of the PET system. Since both 

scattered and true coincidence rates vary linearly with the administered activity, the 

scatter-to-true ratio does not change with the activity. Also, this ratio does not change, at 

the lowest order, with the width of the time window. However, scattered events follow a 

different path towards the detector than non scattered ones and then they could be 

disentangled if goodtime resolution is at hand. A review by (Zaidi and Koral, 2006) 

provides an extensive account on the influence of scatter in patient imaging and methods 

to correct for it. Many different approaches have been suggested for scatter correction. 

These approaches can be divided into four categories shortly described in the following 

paragraphs: multiple energy window technique or Dual Energy Window (DEW), 

convolution method, projection profile examination immediately outside the body and 

simulation method. 

Compton scattered events are recorded in a region of the energy spectrum below the 

photopeak; and there exists a critical energy above which only unscattered events are 

recorded. DEW  (Cherry et al., 2006; Meikle and Badawi, 2005; Zaidi and Koral, 2006) 

use, in addition to the photopeak window (PW), an auxiliary energy window below the 

photopeak (LW), to directly estimate the scattered coincidences (Grootoonk et al., 1996); 

or above the photopeak (UW), in order to collect just unscattered events employed for 

“Estimation of Trues Method (ETM)” (Ferreira et al., 2002). Energy spectra showing the 

window setting, for both DEW and ETM are illustrated in Figure 2.10. 
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Figure 2.10. Energy spectra showing the window setting; (a) dual energy window method and (b) estimation of 
trues method (Meikle and Badawi, 2005). 
 

Convolution method: A point source acquisition is used to estimate the scatter function, 

which is then convoluted with the source distribution to obtain an estimation of scatter 

data. Due to the convergence of this iterative method, the scatter estimation is improved 

after each iteration. The estimates of scatter events are scaled and then subtracted from 

the measured image data. This method is computationally efficient because of the 

availability of fast algorithms (Meikle and Badawi, 2005; Saha, 2010). 

Projection profile examination immediately outside the body: An event detected outside 

the body can be related either to a random or to a scatter coincidence. After random 

coincidences are corrected, data from the tails (outside the object boundary) of the 

projection profiles are fitted to a smoothly varying function, such as a second order 

polynomial (Karp et al., 1990) or Gaussian (Cherry and Huang, 1995). This function then is 

used to estimate the scatter distribution inside the object. The method relies on the 

assumption that scatter is a low-frequency phenomenon and relatively insensitive to the 

actual radiotracer distribution. This may represent a reasonable approximation in a large 

variety of conditions, even for the case of a highly asymmetric source distribution (Bailey, 

1998). The accuracy of the method depends on proper choice of starting points for the 

fitting function and the number of points used. This method has several advantages over 

other approaches. The fact that it does not use an auxiliary window and does not require 

transmission data simplifies the procedure and reduces the demand for large computer 

resources. Moreover, it takes into account the scatter arising from outside the detection 

area. Finally, the information of scatter outside the field of view can be employed to further 

refine more sophisticated approaches. 

Simulation methods: A Monte Carlo simulation is employed to disentangle scattered 
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and unscattered events. It uses the knowledge about the photon interaction with matter to 

estimate the scatter contribution. A survey of this former method and other types in this 

section can be found  in (Meikle and Badawi, 2005; Saha, 2010). 

2.5.5. Dead time  

PET scanners may be regarded as a series of subsystems, each of which requires a 

minimum amount of time to elapse between successive events, for them to be registered 

as separated. Since radioactive decay is a random process, there is always a finite 

probability that successive events will occur within any minimum time interval, and at high 

count-rates, the fraction of events falling in this category can become very significant. The 

main effect of this phenomenon is a loss of the linear relationship between the number of 

coincidence events registered by the PET scanner and the total activity inside the FOV. 

The parameter that characterizes the counting behavior of the system at high event rates 

is known as dead-time (Knoll, 2000). The fractional dead-time of a system at a given 

count-rate is defined as the ratio of the measured count-rate and the count-rate that would 

have been obtained if the system behaved in a linear manner (Casey, et al., 1996). 

Regarding to dead time, counting systems are usually classified as paralyzable or non-

paralyzable. The paralyzable (Knoll, 2000) model describes the situation where the system 

is unable to process events for a fixed amount of time t 	 after the detection of an event 

and if an event arrives while the system is busy due to a preceding event, the system 

remains dead for a further t 	 seconds from the time of arrival of the second event. The 

relationship between the measured event ratem , the actual event raten , and the dead 

time resulting from a single event is thus given by: 

nm = ne t-‐                                                             (2.14) 

In the non-paralyzable case, the system is also rendered dead for a time t 	 after each 

event but, at difference with the previous model, while the system is dead, further events 

do not extend the dead perior. For such systems, the measured count rate tends 

asymptotically to a limiting value of t -1
  as the actual count-rate increases, and the 

relationship between m , n  and t 	 is given by (Knoll, 2000): 

1
nm
nt

=
-‐

                                                                  (2.15) 
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2.6. Performance evaluation  

2.6.1. Energy resolution 
 Energy resolution can be defined as the precision with which a system can measure 

the energy of incident photons (Meikle and Badawi, 2005). Good energy resolution helps 

to exclude scattered events from the acquisition, which in turns enhances contrast and 

reduces background in the image. Primary causes for the degradation of the energy 

resolution are random statistical variations, including (Cherry et al., 2003, Knoll, 2000). 

*    Statistical variations in the number of scintillation light photons produced per keV of 

radiation energy deposited in the crystal; 

*  Statistical variations in the number of photoelectrons emitted from the   photocathode; 

*    Statistical variations in the electron multiplication stage (dynodes) of the PMT. 

Good energy resolution is necessary for a PET detector in order to achieve good image 

contrast and to reduce background counts (Levin et al., 2006). 

In a PET system, the energy resolution can be defined by the energy resolution of the 

single events or the energy resolution of the coincidences (Bailey, 2005b). Measurement 

of energy resolution is made histograming the energy of the events acquired and plotting 

the number of events versus the energy measured.  In scintillation detectors energy 

resolution is a function of the relative light output of the scintillator, as well as its intrinsic 

energy resolution. The intrinsic energy resolution accounts for non-statistical effects that 

arise in the energy measurement process. In order to achieve good image, contrast and 

reduced noise, a good energy resolution is necessary for a PET detector (Levin et al., 

2006). 

2.6.2. Spatial resolution 
The spatial resolution of a PET scanner represents its ability to disentangle two close 

point sources (Cherry et al., 2003), and it is usually characterized by the width of the 

reconstructed point spread function. Spatial resolution is usually characterized by imaging 

a point source or a line source and measuring the corresponding full width half maximum 

(FWHM) of the image of these sources. Spatial resolution is usually measured along 

several directions, in the transaxial plane as well as along the axial direction. In the 

transaxial plane, radial FWHM and tangential FWHM are considered, for point sources 

with an offset from the scanner axis. Several factors that influence the spatial resolution in 
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PET are (Bailey, 2005b; Stickel and Cherry, 2005): 

*    Non-zero positron range. 

*    Non-collinearity of the annihilation photons. 

*    Distance between detectors. 

*    Width of the detectors. 

*    Stopping power of the scintillation detector. 

*    Incident angle of the photon onto the detector. 

*    Depth of interaction of the photon in the detector. 

*    Number of angular and radial sampling of the scanner. 

*    Reconstruction parameters. 

2.6.3. Sensitivity 

The sensitivity of a PET scanner quantifies the ability of a scanner to detect the 

coincident photons emitted from inside the FOV. It is determined mainly by four factors: 

the scanner geometry, the detector efficiency (stopping power for 511 keV photons and 

crystal thickness), the acquisition energy window, and the dead time. The first two factors 

are the main factors, and they will be investigated at length in this thesis. The scanner 

geometry establishes the total solid angle covered by the scanner over its FOV. Small 

diameter scanners with a large extension in the axial direction usually have higher 

sensitivities (Cherry et al., 2003). The detector efficiency is related to the probability that a 

photon whose trajectory intersects the detector will interact and be detected within it. This 

depends on detector material and thickness. 

A third factor affecting the sensitivity is the acquisition energy window, because events 

falling outside this window will not be acquired (Bal et al., 2006). Finally,  dead time (see 

section 2.5.5) is another source of count losses, because some of the events are rejected 

by the processing chain, both for dead time associated with the detection of each single 

photon (Bal et al., 2006; Vicente et al., 2012a, 2012b) and for coincidences. Nominal 

sensitivity is usually defined after a measurement at low activity and thus dead-time effects 

can be neglected.  

2.6.4. Scatter fraction (SF) 

The fraction of coincidences that have scattered (explained in section 2.3.4), and yet 
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are acquired within the applied energy window, is known as scatter fraction (SF) (Bailey, 

2005b). SF is often used to compare the performances of different PET scanners. It is 

given by: 

                    
t

SSF
R

=                                     (2.16) 

where S  and tR  are the scatter and prompt counts rate. SF is a critical component of the 

noise equivalent count rate (NECR) as will be described in next section. 

2.6.5. Count rate performance (NEC) 

The Noise Equivalent Count Rate (NECR) (Strother et al., 1990) is an indicator of the 

number of useful events that the system can acquire for a given activity level. It is a 

performance curve suitable to compare count rate performance of different scanners or of 

the same scanner operating at different conditions (NEMA, 2007). As it is defined in the 

standard performance comparison methodology, one could say that the NECR represents 

the count rate which would have result in the same SNR in the image if the data would be 

free of scatter and random events (Bailey, 2005b).  The NEC has been shown to be 

proportional to the square of a SNR figure (Strother et al., 1990; Surti et al., 2003; Worstell 

et al., 2004) where the signal refers to true events and noise to the combined statistical 

fluctuations from all types of events. The NEC rate has been presented in several 

approximately equivalent ways, for instance it is defined in (NEMA, 2007) as: 
2TNEC

T S R
=

+ +
                (2.17) 

                                                     

where T  is the true coincidence count rate, S  is the count rate of scatter coincidences 

and R  is the count rate of random coincidences falling within the boundary of the object. 

The NEC has been shown to be proportional to the square of the SNR (Strother et al., 

1990; Surti et al., 2003; Worstell et al., 2004) where the signal refers to the true events and 

the noise to the combined statistical fluctuations from all types of events.  

 

2.7. Monte Carlo simulations   
As we introduced before a MC simulation is a model able of simulate the behavior of 

the system being simulated, based on a priori knowledge of the probabilities of occurrence 

of the different processes or interactions involved in the measurement chain. They are a 

useful resort to study the interaction of radiation with matter (Agostinelli et al., 2003; Baro 
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et al., 1995). Due to the stochastic nature of radiation emission and detection processes, 

the MC method is of particular interest for medical physics in areas such as radiotherapy, 

radiation protection and nuclear medicine (Andreo, 1991). In fact, simulation techniques 

constitute nowadays an essential research tool in nuclear medicine in the study of the 

response of imaging systems, like PET and SPECT scanners, predicting the performance 

of new detectors and optimizing their design (España, 2009; Zaidi, 1999).  

Data obtained from MC simulations are essential in the development, validation and 

comparative evaluation of image reconstruction techniques and for the assessment of 

correction methods for photon attenuation, scattering, etc. One of the advantages of MC 

simulations is the possibility to change different parameters and to investigate the effects 

of such modifications on the performance of scanners, allowing testing several detection 

configurations that may be imposible or not practical in an experimental approach. 

Figure 2.11 illustrates the principles and main components of MC applied to a cylindrical 

multi-ring PET imaging system. Some of these principles will be described in the following 

sections (Zaidi, 2006). 

 

 
Figure 2.11. Principles and main components of a Monte Carlo program dedicated to the simulation of 
cylindrical multi-ring PET imaging systems. Adapted from (Zaidi, 2006) 
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2.7.1. Random numbers 

Random numbers are of key importance when modeling a physical system using a 

statistical model. Every random number generator has to deliver uncorrelated, uniform and 

reproducible sequences with a very long period, and produce them in a short amount of 

time. Computer algorithms can be used to generate random numbers. An example of such 

an algorithm is the linear congruent algorithm where a series of random numbers In  is 

calculated from a first seed value 0I , according to the relationship: 

1
k

n nI = (aI + b)mod(2 )+                                                  (2.18) 

where a  and b  are constants and k  is the integer word size of the computer 

(Ljungberg et al., 2012).  

To obtain a stochastic variable that follows a particular PDF, several different sampling 

methods can be used, such as the distribution function method, the rejection method and 

the mixed method (Ljungberg, 1998; Zaidi, 1999). 

2.7.2. Monte Carlo packages for nuclear medicine 

Different MC programs have been in use in the field of nuclear imaging and internal 

dosimetry with many of them available as open source codes. A recent review of those 

can be found in (Buvat and Lazaro, 2006). There are packages that simulate the transport 

of radiation through matter such as: MCNP (Briesmeister, 1993), EGS4 (Kawrakow and 

Bielajew, 1998), PENELOPE (Salvat et al., 2008) and GEANT4 (Agostinelli et al., 2003). A 

number of tools for PET simulation have been developed based on these codes, such as 

SIMSET (Harrison et al., 2002), PETSIM (Thompson et al., 1992) or EIDOLON (Zaidi, 

1999), based on MCNP, and GATE, based on GEANT4 (Jan et al., 2004). Most of them 

suffer from different drawbacks (handling of complex models and computing time). Further 

we must mention GATE,  based in GEANT4, widely used (Buvat and Lazaro, 2006) in 

nuclear and particle physics. GATE is flexible and allows the setup of different system 

designs (Jan et al., 2004). However this flexibility makes the simulations very time 

consuming. Later in this work we will describe more in detail PeneloPET (España et al., 

2009), a MC code based on PENELOPE (Salvat et al., 2008) used in current thesis. 

Compared with other codes, PeneloPET is easy to use and acquires less simulation time.  

 

2.8. Image reconstruction algorithms in PET 
The basic role of image reconstruction is to convert the counts at projections measured 
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at many different angles around the object, into a image that quantitatively reflects the 

distribution of positron-emitting atoms. There are two basic approaches to image 

reconstruction. One approach is analytic (Zanzonico and Heller, 2007) in nature and 

utilizes the mathematics of computed tomography that relates line integral measurements 

to the activity distribution in the object. The paradigm of these algorithms is the filtered 

back-projection (FBP) method. The second kind of reconstruction methods is statistic-

iterative. These model the data collection process in a PET scanner and attempt, in a 

series of successive iterations, to find the image that is most consistent with the measured 

data. 

This section contains an overview of some image reconstruction algorithms used in 

PET. 

2.8.1. Rebinning 

In this thesis, we mean by rebinning algorithms the ones employed to sort data from 

oblique sinograms of a 3D data set into the corresponding planes of a 2D data set. In this 

way, it is possible to reconstruct a 3D data set with conventional 2D reconstruction 

schemes, while maintaining the high sensitivity of 3D acquisitions. Mainly two approaches 

are used in clinical routine: single slice rebinning (SSRB) and Fourier rebinning (FORE) 

(Defrise et al., 2005; Defrise and Gullberg, 2006). 

 Single-slice Rebinning (SSRB) 

The 3D data sinograms are considered to consist of a set of 2D parallel projections, and 

the FBP is applied to these projections. However, the complexity, large volume, and 

incomplete sampling of the data are some of the factors that limit the use of the FBP 

directly for reconstruction of 3D data. 

To circumvent these difficulties, a modified method of handling 3D data is commonly 

used. A method of 3D reconstruction involves the rebinning of the 3D acquisition data into 

a set of 2D equivalent projections, Figure 2.12. Rebinning is achieved by assigning axially 

tilted LORs to transaxial planes (plane perpendicular to the scanner axis) intersecting them 

at their axial midpoints. This is equivalent to collecting data in a multiple ring scanner in 2D 

mode, and is called the single slice rebinning algorithm (SSRB). This method works well 

along the central axis of the scanner, but steadily becomes worse with increasing radial 

distance. This approximate algorithm is based on the assumption that each measured 

oblique LOR only traverses a single transaxial section within the support of the tracer 
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distribution. Then each oblique LOR can be converted into a LOR belonging to the 

transaxial plane halfway to the planes containing the extremities of the original LOR 

(Defrise et al., 2005). This is illustrated in Figure 2.13. 

 
Figure 2.12. Schematic representation of the principle of a rebinning algorithm for 3D PET data. Adapted from 
(Defrise et al., 2005). 
 

 
Figure 2.13. SSRB; an illustration of the set of oblique LORs transformed into a single transaxial LOR 
 

Mathematically, the SSRB algorithm can be expressed as follows (Defrise et al., 2005): 
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where maxq  is the maximum axial aperture for an LOR at distance x ¢ from the axis in 

slice z , dR  is the scanner radius and L  the number of transaxial sections sampled. 
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An inspection of the assumptions SSRB is based on, restricts the use of this algorithm 

for activity distributions that are spanned within a short radial distance from the scanner 

axis, as well as for LORs corresponding to small values of θ. For realistic distributions 

these conditions can not be met and the accuracy of this algorithm is very limited. The 

main advantage of SSRB is its simplicity.   

Fourier Rebinning  (FORE) 

In another method, called the Fourier rebinning (FORE) algorithm, rebinning is 

performed by applying the 2D Fourier method to each oblique sinogram in the frequency 

domain. This method is more accurate than the SSRB method (Defrise et al., 2005) 

because of the more accurate estimate of the source axial location, and extends the range 

of 3D PET studies that can be processed using rebinning algorithms (Herraiz, 2008). An 

ideal rebinning transformation would place each 3D event into its correct 2D direct plane 

location or locations. The FORE algorithm provides a fast transformation from 3D data to 

2D data based on a second-order Taylor series approximation of the 3D Fourier 

transformation of the data. 

Rebinning is based on the relation between the Fourier transforms of oblique and direct 

sinograms (Bailey, 2005a). It is given by: 

         ( , , , 0) ( , , tan / (2 ), )s sP v k z P v k z k vz q p q= @ = +                 (2.21) 

where k  is the azimuthal Fourier index. The FORE method amplifies slightly the statistical 

noise, compared to SSRB, but results in significantly less azimuthal distortion. 

2.8.2. Analytical methods  

The central-section theorem states that the Fourier transform of a one-dimensional 

projection is equivalent to a section, or profile, at the same angle through the center of the 

two-dimensional Fourier transform of the object (Defrise et al., 2005). The central-section 

theorem is illustrated in Figure 2.14, where { }1 ( , )p s f¡ is the one-dimensional Fourier 

transform of a projection, { }2 ( , )f x y¡  is the two-dimensional Fourier transform of the image, 

and xv  is the Fourier space conjugate of x . The central-section theorem indicates that if 

we know ( , )sp v f  at all angles, then we can fill in values for ( , )x yF v v . The inverse two 

dimensional Fourier transform of ( , )x yF v v  will give ( , )f x y . 

 

1 2( , ) ( ( , )) ( ( , )) ( , )s x yp v p s f x y F v v fff f= ¡ = ¡ =                                     (2.22) 
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Figure 2.14. Pictorial illustration of the two-dimensional central-section theorem, showing the equivalency 
between the one-dimensional Fourier transform (top right) of a projection at angle φ�(top left) and the central-
section at the same angle (bottom left) through the two dimensional Fourier transform of the object (bottom 
right) (Bailey, 2005a). 
 

Back-projection is the adjoint operation to the forward projection process that yields the 

projections of the object. Figure 2.15 shows the back-projection along a fixed angle � . 

Conceptually, back-projection can be described as placing a value of � � �� � �  back into an 

image array along the appropriate LOR but, since the knowledge of where the values 

came from was lost in the projection step, a constant value is placed into all elements 

along the LOR  (Henkin et al., 2006). 

Due to the oversampling in the center of the Fourier space, back-projection of all the 

collected projections will not be enough to return a good image. In other words, each 

projection fills in one slice of the Fourier space resulting in over sampling in the center and 

less sampling at the edges. This over sampling in the center of Fourier space needs to be 

filtered in order to have equal sampling throughout the Fourier space. Basically, the 

Fourier transform of the back-projected image must be filtered with a ramp 

filter � �� �
� �� � �� � .  This cone filter accentuates the values at the edge of the Fourier 

space and reduces the values at the center.



Chapter 2-                                                                                                                Background 

 41 

 
Figure 2.15. Back-projection, � � � �� � � � , into an image reconstruction array of all values of  � � �� � �  for a fixed 
value of  φ (Henkin et al., 2006). 

The filtered-back-projection (FBP) reconstruction method is the most well known 

standard method for reconstruction which applies the concept of back-projection and 

filtering explained before. Within FBP, the general expression employed to calculate the 

source distribution from projection data is (Defrise et al., 2005): 

                                   	 
	 
�
�

�� � � � � �� �� � � � � � �
�

� �� � ��                                        (2.23) 

Where ��  is the smoothing function that can take any shape (Henkin et al., 2006). For 

further noise reduction in the image an additional filter can be employed, such as  

Hamming or Butterworth (Cherry et al., 2003). 

Analytical algorithms, and FBP in particular, are linear and, thereby, allow an easier 

control of most of their well known properties (i.e. spatial resolution), something crucial for 

quantitative data analysis (Defrise et al., 2005). Furthermore it is a standard reconstruction 

method for comparison of scanners (Goertzen et al., 2012). However it has some 

disadvantages, that it assumes Gaussian, instead of Poisson noise, therefore it creates 

streak artifacts (Cherry et al., 2003), also it does not allow resolution recovery compared to 

iterative methods. Additionally it could produce images with spurious negative values. 

2.8.3. Iterative methods  

Iterative reconstruction algorithms are based on a mathematical model of the physics of 
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PET or SPECT. The imaging process of obtaining the ( )y i counts on each of the i  pair of 

detectors, from an object discretized in ( )x j 	  voxels, can be described by the operation: 

    ( ) ( , ) ( )jy i A i j x j= Â                                       (2.24) 

where ( , )A i j  is the system response matrix (SRM). The vector ( )x j  and ( )y i  	  

corresponds to the voxelized image and the measured data respectively. In the analytical 

reconstruction framework; ( )x j  is equivalent to ( , )f x y , and ( )y i  equivalent to ( , )p s f .  

Each element ( , )A i j is defined as the probability of detecting an annihilation event 

coming from image voxel j  by a detector pairi . This probability depends on factors such 

as the solid angle subtended by the voxel to the detector element, the attenuation and 

scatter in the source volume and the detector response characteristics. 

The forward projection operation just introduced above estimates the projection data 

from a given activity distribution of the source. Backward projection is the transposed 

operation of forward projection; it estimates a source volume distribution of activity from 

the projection data. The operation corresponds to: 

( )( ) ( , )
i

y ib j A i j= Â                               (2.25) 

where ( )b j denotes an element of the backward projection image. Both the forward and 

backward projection operations require the knowledge of the SRM (Frese et al., 2003; 

Herraiz et al., 2006; Rafecas et al., 2004). Iterative reconstruction algorithms repeatedly 

use the forward and backward projection operations, which are the most time-consuming 

part of iterative reconstruction programs. Some implementations trade accuracy for speed 

by making approximations that neglect some physical processes, such as positron range, 

scatter and fractional energy collection at the scintillators or visible light loses in the 

detectors (Lee et al., 2000; Vaquero et al., 2004; Yamaya et al., 2003). This approach 

simplifies these operations to increase speed, but this trade-off often leads to non-optimal 

images. 

2.8.4. EM – ML 

The most widely applied algorithm for finding the maximum-likelihood (ML) estimation of 

activity ƒ given the projections p, is the expectation maximization (EM). This was first 

applied to the emission tomography problem by Shepp and Vardi (Shepp and Vardi, 

1982).  ML, though, is a general statistical method, formulated to solve many different 

optimization problems of physics, biology, economy and others. The EM-ML algorithm can 
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be written as (Herraiz et al., 2006): 

         '1

( )( , ) ' '( , ) ( )
( ) ( )

( , )

it

it V

L

p LSRM L V
SRM L V f VL

itf V f V
SRM L V

+

Â
Â

=
Â

        (2.26) 

where 1( )itf V+  is the expected value of voxel V  at iteration it , p  is the data acquired 

and SRM is the system response matrix. The SRM is a precalculated matrix that contains 

the probability that one emission occurred at voxel V  is detected in a detector elementL . 

The accuracy of this matrix will be extremely important for the quality of the images 

resulting from the reconstruction method  (Mumcuoglu et al., 1996). 

Usually, iterative algorithms based on ML statistical models assume that the data being 

reconstructed retain Poisson statistics (Shepp and Vardi, 1982). However, to preserve the 

Poisson statistical nature of data, it is necessary to avoid any pre-corrections (Qi et al., 

1998) to the data. Corrections for randoms scatter and other effects should be 

incorporated into the reconstruction procedure itself, rather than being applied as pre-

corrections to the data. At times, sophisticated rebinning strategies are employed to build 

sinograms into radial and angular sets. This also changes the statistical distribution of the 

data, which may no longer be Poisson (Kadrmas, 2004). 

A serious disadvantage of the EM procedure is its slow convergence (Lewitt et al., 

1994). This is due to the fact that the image is updated only after a full iteration is finished, 

that is, when all the LORs have been projected and back projected at least once. In the 

ordered subset EM (OSEM) algorithm, proposed by (Hudson and Larkin, 1994), the image 

is updated more often, which has been shown to reduce the number of necessary 

iterations to achieve a convergence equivalent to that of EM, as the convergence is 

approximately proportional to the number of image updates. 

According to the literature, EM methods have another important drawback: noisy 

images are obtained from over-iterated reconstructions, and this is usually attributed to 

either the fact that there is no stopping rule in this kind of iterative reconstruction (Johnson, 

1994) or to the statistical (noisy) nature of the detection process and reconstruction 

method (Bettinardi et al., 2002; Biemond et al., 1990). In practice, however, an image of 

reasonable quality is obtained after a few iterations (Hudson and Larkin, 1994). 

Several techniques have been proposed to address the noisy nature of the data: 

filtering the image either after completion of the reconstruction, during iterations or 
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between them (Slijpen and Beekman, 1999), removal of noise from the data using wavelet 

based methods (Mair et al., 1996) or smoothing the image with Gaussian kernels (Sieves 

method) (Liow and Strother, 1991; Snyder et al., 1987). 

Maximum a priori (MAP) algorithms are also widely used (Green, 1990). MAP adds a 

priori information during the reconstruction process, the typical assumption being that, due 

to the inherent finite resolution of the system, the reconstructed image should not have 

abrupt edges, at least not more abrupt that what one can expect from the resolution of the 

system. Thus, MAP methods apply a penalty function to those voxels which differ more 

than a certain threshold from their neighbors. Whether the maximum effective resolution 

achievable is limited, by the use of these methods, is still an open issue (Alessio et al., 

2003). On the other hand, a proper choice of reconstruction parameters, such as number 

of iterations, the use of an adequate system response and a smart choice of subsetting, 

would yield high quality images with the EM procedure (Herraiz et al., 2006). 

2.8.5. Time-of-flight (TOF) 

The time-of-flight (TOF) is the time difference between detection of the two photons 

produced by the positron annihilation. High resolution measurement of this time difference 

would allow one to determine the precise location at which the annihilation occurred. 

Although the idea of utilizing this TOF information appeared in the 1960s (Budinger, 1983), 

lack of fast scintillators has limited building practical TOF PET systems until the recent 

development of fast detectors such as LSO (Melcher and Schweitzer, 1991; Moszynski et 

al., 2006; Moses and Derenzo, 1999) and LaBr3 (Kuhn et al., 2004; Surti et al., 2006).  

Most of the TOF PET systems developed in the 80’s were 2D systems where each 

transverse plane is reconstructed using mostly 2D analytical reconstructions (Snyder et al., 

1981; Tomitani, 1981). In principle, localization of the point of annihilation, that is, image 

reconstruction, can be performed directly if we can measure the time difference with 

enough precision. As the TOF resolution of the scanners is far from ideal (but improving 

every year), reconstructin methods must still be employed, for which the introduction of 

TOF information help increasing the SNR of the reconstructed image (Harrison et al., 

2005; Manjeshwar et al., 2005; Moses, 2003; Snyder et al., 1981; Tomitani, 1981). As 

indicated in (Moses, 2003), and described analytically in (Snyder et al., 1981; Tomitani, 

1981; Vunckx et al., 2010), the SNR improvement in TOF PET image reconstruction is 

determined by the TOF timing resolution. 
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We will give some ideas about the present status of TOF. The distance xΔ of the 

annihilation point from the center of the (LOR) (Figure 2.16) is related to the time 

difference Δt by: 

              / 2x t cD = D ◊                                                         (2.27) 

where c is the speed of light.  

 
Figure. 2.16. Principle of TOF improvement of annihilation localization along the LOR 
 

The system TOF resolution tD  in Figure. 2.16) of the scanner is defined as the Full-

Width-at-Half-Maximum (∆tFWHM) of the distribution of time differences collected from a 

centered point source. According to Equation 2.29, in order to achieve a spatial resolution 

better than 1 cm, a TOF resolution of 66 picoseconds would be required. In previous 

generations of commercial scanners, the TOF resolution was of the order of 1 ns (Moses, 

2003). However, current PET/CT scanners have obtained TOF resolutions of the order of 

500 ps, which offer the opportunity of using TOF information to improve the quality of the 

reconstructed images (Conti et al., 2005). Indeed, employing TOF information, image 

background, which is essentially noise, can be reduced. We expect a system time 

resolution of around 550 ps for current LSO based systems (Moses and Ullisch, 2006) and 

the race for systems with 300 ps TOF resolution or better has started (Zaidi et al., 2011). 
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3. PeneloPET simulations of 
Clinical Scanners 

There are unavoidable tradeoffs when choosing the characteristics of a PET scanner. 

For instance, by increasing the length of the scintillator crystal, the sensitivity of the 

scanner improves but spatial resolution diminishes due to depth-of-interaction (DOI) 

effects (Kunze et al., 2000). Increasing the number of detector rings improves sensitivity, 

but also the complexity and cost of the PET scanner. Therefore, the selection of 

parameters should be carried out carefully. Simulation tools are of invaluable help for this 

purpose. Indeed, MC simulations are widely used in PET to optimize detector design and 

acquisition protocols (Braem et al., 2004; Heinrichs et al., 2003), and for developing and 

assessing corrections and reconstruction methods (Buvat and Castiglioni, 2002; Herraiz et 

al., 2006). MC methods make it possible to estimate scanner properties which cannot be 

easily determined experimentally, as well as to assess the change in performance of PET 

scanners induced by modifications in scanner characteristics (Zaidi, 1999). In recent 

years, the availability of powerful computers facilitated widespread use of PET-dedicated 

simulation codes (Agostinelli et al., 2003; Baro et al., 1995; Briesmeister, 1993; Harrison et 

al., 1993; Kawrakow and Bielajew, 1998; Thompson et al., 1992).  

PeneloPET (España et al., 2009) is a Monte Carlo code based on PENELOPE (Salvat 

et al., 2008), which allows for fast and easy simulation of PET scanners. PeneloPET 

models the detector geometry and materials, the acquisition electronics, and the source. 

All these components are configured by means of a few plain text input files (España et al., 

2009). PeneloPET simulations can easily be performed in a cluster of computers.  

As has been mentioned, newer clinical PET scanners include time-of-flight (TOF) 

capability, which offers the opportunity of using this TOF information to improve the quality 

of the reconstructed images (Conti et al., 2005). Indeed, employing TOF information, 

image background, which is essentially noise, can be reduced. One of the goals of this 

work is to assess the capability of PeneloPET to include TOF properties of clinical 

scanners. 

In this chapter we present results of simulations performed with PeneloPET. While 

PeneloPET has been validated and employed to simulate preclinical scanners (España et 

al., 2009), here we report for the first time detailed comparisons of PeneloPET simulations 
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to real data for clinical scanners.  The specific materials for each particular task are 

described in their corresponding sections for major clarity. Section 3.1 presents the main 

features of the Monte Carlo simulation tool and description of PeneloPET code in addition 

to PENELOPE algorithm. Materials and methods are followed in the next section (3.2), 

which includes scanners geometry definition, and performance evaluation of the Biograph 

scanner. Results and conclusion are following in sections 3.3 and 3.4 respectively. 

 

3.1. Monte Carlo simulation: PeneloPET 
PeneloPET is easy to use and fast MC code. Fast simulation was achieved without 

loosing simulation detail.  For its versatility, speed and easy to analyze outputs, 

PeneloPET is a tool useful for scanner design, and estimation of system response. In the 

following section we will describe its main characteristics. For additional details see 

(España et al., 2009). 

3.1.1. PeneloPET features 

PeneloPET (España et al., 2009) is a Monte Carlo simulator based on PENELOPE  

(Salvat et al., 2008), which is written in FORTRAN. PENELOPE is a MC code for the 

simulation of the transport in matter of electrons, positrons and photons with energies from 

a few hundred eV to 1 GeV. It is then less generally aimed as GEANT4, but it suits well 

PET needs, it is fast and robust, and it is extensively used for other medical physics 

applications, particularly for dosimetry and radiotherapy (Panettieri et al., 2007; Sempau 

and Andreo, 2006; Vilches et al., 2006). The FORTRAN language used for PENELOPE as 

its highly standardized and it is available in many computer architectures, aimed to 

scientific computing, to which FORTRAN compilers have been adapted and optimized for 

speed and accuracy. On these grounds, PeneloPET has been developed, a FORTRAN 

package that allows to easily defining complete simulations of PET systems within 

PENELOPE.  

PeneloPET has been developed by our group (GFN, Universidad Complutense Madrid) 

as a PhD thesis by Samuel España (España, 2009). PeneloPET simulates PET systems 

based on crystal array blocks coupled to photo detectors and allows the user to define 

radioactive sources, detectors, shielding and other parts of the scanner with a few input 

files. The code was at first intended for small animal PET scanners (España, 2009) but 

nothing prevents its use to clinical scanners. In this chapter we study the suitability of 
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PeneloPET for clinical scanners. The use of PeneloPET facilitates the description of the 

different components necessary for the accurate modeling of a PET system, starting from 

the geometry configuration, up to the creation of a processing chain for the detected 

events. Thus analytical phantoms can also be defined through the use of these basic 

structures. 

As said before, PeneloPET is capable of preparing sophisticated simulations just by 

editing a few simple input text files, without requiring knowledge of FORTRAN or any other 

programming language. Simulations prepared with PeneloPET can be run in parallel in 

clusters of computers. For doing that, a Python1 script is available to run the code. The 

choice of Python allows to run the script under Windows, Linux/Unix, and Mac OS X. The 

Python script launches the simulation on the number of CPUs desired, with different 

random seeds, and takes care of the initial activity and the acquisition time for each sub-

process. In this way, the simulation time is reduced proportionally to the number of CPUs 

employed (España, 2009). 

The basic components of a PeneloPET simulation are detector geometry and materials 

definition, source definitions, non-active materials in the field of view of the scanner, and 

electronic chain of detection. All these components are defined with parameters in the 

input files. The output data (i.e. sinograms, LORs histograms and list mode) can be 

exploiting with several programming languages. List mode generates files with all hits 

including types and time of coincidence events (random, scatter, true, and pile-up). A brief 

descriptions of PeneloPET input and output is given in the following sections. 

3.1.1.1. Source code 
PeneloPET requires a moderate time investment for the preparation of the simulation 

setup; the code is structured in two modules. The first one deals with the PENELOPE 

simulation, which takes care of the information about the scanner detectors and materials, 

source and decay. This module includes the routines involved in the distribution of 

isotopes and emission of particles generated in the decay processes, as well as their 

interactions.  

The second module post-processes the decay and interaction data generated by the 

first module. It takes into account the anger logic for positioning the interaction inside the 

crystal array, detector pile-up, energy resolution, and aspects of the electronics (i.e. 

                                                
1 http://www.python.org/  
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coincidence time window, dead time, time resolution, and integration time). The energy 

window can be applied in this module. In this module no PENELOPE routines are 

involved. Finally continuous or pixilated detectors can be managed by this second stage of 

the simulation package.  

3.1.1.2. Description of input files  

In order to setup the simulation, four files have to be prepared by the user. As an 

example, Table 3.1 shows these input files for the simulation of a line source for the 

Biograph PET/CT scanner as described by (Jakoby et al., 2009). 

The first input file in Table 3.1 (main.inp) contains the general parameters of the 

simulation, such as the acquisition protocol and acquisition time. It also enables simulation 

of secondary particles, and controls whether positron range and non-collinearity are taken 

into account. It contain options for scanner rotation, energy and coincidence windows, 

contributions to dead time, output format, and type of study. 

In the second file (scanner.inp), which contains the scanner definition, multiple rings 

and layers, material and size of crystals can be specified. Reflector thickness as well as 

energy resolution, rise and fall time and scanner radius also can be easily introduced.   

Non-radioactive materials other than the scintillator (already defined in the file 

scanner.inp), such as surrounding materials and shielding, are defined in a third file 

(object.inp). The radioactive source is defined separately in a fourth input file (source.inp), 

which contains source geometry and information about activity and isotope. Keeping 

separated definitions for sources and materials simplifies the comparison of simulations of 

ideal sources, without scatter or attenuation, to more realistic sources. Details about 

PeneloPET input files and options can be found in the PeneloPET manual2. 

Typical materials for crystals, shielding and phantoms are predefined in PeneloPET 

and, if necessary, new materials can be created in a straightforward way. The visualization 

tools built in PENELOPE (gview2d, gview3d (Salvat et al., 2006)) are also available in 

PeneloPET to display and test geometries. This is especially useful during scanner design 

stages (see Figure 3.2).  

 

 

                                                
2 http://nuclear.fis.ucm.es/penelopet/  
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Table 3.1. PeneloPET input files needed to simulate a cylinder source in the Biograph scanner (Jakoby et al., 
2009); ‘F’ stand for false or disable option and ‘T’ stand for true or enable option. Full detail about this input 

file and options can be found in the PeneloPET manual. 

----GENERAL PARAMETERS--- (main.inp) 
 
12345 54321   !Random number generator seeds 
500 1 F   !Acquisition Real Time[sec]; Number of Frames; Read frame_list.inp 
F   !read alignments.inp file 
F F   !read coinc_matrix.inp 
1000   !Limit for the number of interactions in each particle 
F T T F   !Secundary Particles Simulation; Positron Range; Non-Collinearity; 
Generate range profile 
0 0 1 1   !Start&Stop Angles [DEG]; Number of Steps per cycle; time per cycle 
[sec] 
4250000.                !Lower Energy Window (eV)  
650000.   !Upper Energy Window (eV) 
2.25   !Coincidence Time Window (ns) 
10   !Triggers Dead Time (ns)] 
120   !Integration Time (ns) 
80   !Singles Dead Time (ns) 
F F F   !Hits LIST; Singles LIST; Coincidence LIST 
F   !Write Lor Histogram 
F 336 336  38 11 F      !Write Sinogram; radial bins; angular bins; maximum radio; maximum ring 
difference; span ;split  
F 336 336 109 68 21.8  !Write Image; X Y Z voxels, Transaxial & Axial FOV (cm)] 
F   !Hits checking  
T   !Verbose 
T   !Get Rid more than 2 single en coincidencia 
F         !System Renponse Simulation:  LOR-RESPONSE 
F   !System Renponse Simulation:  SINOGRAM-RESPONSE 
1 1 13  !Chord points - Transaxial Axial Longitudinal] 
0.5 0.5 8.55 !Tranaxial (pitch times); Axial (pitch times); Longitudinal(cm) 
2 5000000  !Chord Aperture, Decays/Point  
 

--- SCANNER PARAMETERS --- (scanner.inp) 
 
48   !Number of Detectors by Ring  
26   !Number of Detectors in Coincidence in the same Ring  
4   !Number of Rings  
0.4   !Gap Between Rings [cm]  
13   !Number of transaxial crystals by Detector [COLUMNS]  
13   !Number of axial crystals by Detector [ROWS]   
1   !Number of crystal layers by Detector  
2.0 8 0.12 0.8 40 0.5 !Length[cm]; Material; Energy Resol; Rise T[ns]; Fall T[ns], Time Resol 
[ns]    
0.4 0.4 0.04                  !Pitch (Transaxial; Axial): Distance between center of adyacent crystals,  
Reflector thickness  [cm]  
42.8                  !Radio: Center FOV - Center Front of Detector [cm]  
 

---Body parameter--- (object.inp) 
 
!TYPE MATERIAL X_CENTER Y_CENTER Z_CENTER R1 R2 HEIGHT[cm] PH_INC 
TH_INC[DEG]  
 C 1 0 0 0 0 10 70.0 0 0  

---Source PARAMETER --- (source inp) 
 
!TYPE ACTIVITY[Bq] UNITS ISOTOPE Material X Y Z R1 R2 H[cm] PH_INC TH_INC PH TH 
TH1 TH2[DEG]  
 C 3.9e6 F 1 1 0 0 0 0 0.05 70 0 0 0 0 0 180  
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3.1.1.3. Description of output files  

Three levels of detail output are offered by PeneloPET, categorized as high, 

intermediate and lower detail. Information regarding each interaction to be recorded for 

further analysis is classified as the highest level. In intermediate level the single events are 

recorded for further analysis, finally at the third and lowest, level of detail only coincidence 

events are recorded in a compact LIST mode. Information about pile-up, scatter, random 

and self-coincidence events, obtained from the simulation, is also summarily available. 

As seen in the introduction, there are different kinds of ‘coincidence’ events and all of 

these are listed in PeneloPET outputs. Pile-up coincidences occur when at least one of the 

single events has suffered pulse pile-up. When two photons in the coincidence pair come 

from uncorrelated annihilation process, then we have a random coincidence in PeneloPET 

output. As well, coincidences will be categorized as scatter, when at least one of the 

photon considered has interacted before reaching the scintillator. Self-coincidence flag are 

given to events for which the same photon, after scattering in a first detector, reaches a 

second detector. If the energy deposited in each detector is above the detection threshold, 

it may trigger two single events and yield a self-coincidence count. The remaining 

coincidences are labeled as true events.  

Several output histograms are generated by PeneloPET, for further understanding and 

analysis such as sinogram projections, LOR histogram and energy spectrum. PeneloPET 

output can be converted into ROOT format (Brun and Rademakers, 1997) for further 

analysis with the tools provided in PeneloPET. In order to simplify the reconstruction of 

simulated data, the format of the sinograms conforms to that expected by the STIR 

library3. In this thesis we converted the list-mode to a ROOT format to produce sinograms 

as well as to study the time resolution of the scanner, which will be explained later in this 

chapter. 

3.1.2. PENELOPE  

 As it was mentioned earlier, PENELOPE (Salvat et al., 2008) is a code for MC 

simulation, it is suitable for good range of energy, and allows for complex materials and 

geometries. PENELOPE is being broadly employed, with numerous applications in the 

field of medical physics (Panettieri et al., 2007; Sempau and Andreo, 2006). 

PENELOPE consists of a package of subroutines (FORTRAN77 programming 
                                                
3 http://stir.sourceforge.net  
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language), invoked by a main program that controls the evolution of the stories of particle 

counters and accumulates the magnitudes of interest for each specific application.  

These subroutines are distributed by Nuclear Energy Agency - Organization for 

Economic Co-operation and Development (NEA-OECD). The authors are Francesc Salvat 

and Jose M. Fernández-Varea of the Physics Department of the Universidad de Barcelona 

and Josep Sempau of the Institute of Energy of the Universidad Politécnica de Cataluña 

(Salvat et al., 2008). 

The simulation of electrons and positrons includes the following types of interactions: 

• Hard elastic collision (θ > θc). 
• Hard inelastic collision (θ > θc).  
• Hard Bremsstrahlung emission. 
• Delta interaction. 
• Artificially soft event (θ < θc). 
• Inner-Shell impact ionization. 
• Annihilation (only for positrons). 
• Auxiliary interaction (photonuclear interactions simulation). 
 
The simulation of photons includes the following interactions: 
• Coherent scattering (Rayleigh). 
• Incoherent scattering (Compton). 
• Photoelectric absorption. 
• Electron-Positron pair production. 
• Delta interaction. 
• Auxiliary interaction. 

For further explanation of the physics included in these interactions can be found in this 

reference (Salvat et al., 2008). The use of PENELOPE requires preparing a main program 

which will be responsible for calling the PENELOPE subroutines and for storing the 

information about the trajectories of the particles simulated.  

The main program should provide PENELOPE with the information about the geometry 

and materials, and also other parameters as type of particle, energy, position and direction 

of movement of the particle to be simulated. The user can create a simulation environment 

through appropriate use of these tools. PENELOPE is of relatively common use in 

experimental nuclear physics and medical physics (Panettieri et al., 2007). For further 

information of PENELOPE and how it is used in PeneloPET can be found in (España, 

2009).  
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3.2. Materials and methods  

3.2.1. Geometry of the BIOGRAPH family of PET/CT scanners 
In this work we investigated the Biograph PET/CT family: Biograph True-point (B-TP), 

Biograph Tue-point True V (B-TPTV) and Biograph mCT (B-mCT). In addition, we also 

considered hipotetical scanners built out of more rings than the existing ones, and thus 

with an extended axial FOV. In this section we will describe the general characteristics of 

the three scanners mentioned above, and then we will focus in B-TPTV characterization 

as it is used to set the simulation parameters to perform a  study of the other scanners.   

The B–TP scanner has three rings of 48 detector blocks, each comprising 13 x 13 

crystals (4 x 4 x 20 mm3) coupled to 4 photomultiplier tubes. This configuration covers an 

axial field-of-view (FOV) of 16.2 cm resulting in 81 image planes with a slice thickness of 2 

mm (Jakoby et al., 2009).  

The B-TP with TrueV (B-TPTV) scanner incorporates four rings of the same detector 

blocks as in the B-TP, so extending the axial FOV to 21.8 cm with 109 image planes, each 

2 mm thick. Both scanners (B-TP and B-TPTV) operate in 3-dimensional (3D) mode 

(Jakoby et al., 2009), with a maximum ring difference of 38 and 27 respectively. Also the 

two PET scanners operate with a 4.5 ns coincidence time window and a 425–650 keV 

energy window.  

The Biograph mCT PET scanner (Jakoby et al., 2011) is essentially based on the same 

geometry as the B-TPTV but acquires data with an extended ring difference of 49. 

Furthermore the patient bore on the mCT scanner is 78 cm, compared to 70 cm on the B-

TPTV.  Table 3.2 shows the main parameters of the PET scanners described above 

(Jakoby et al., 2011, 2009).  
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Table 3.2. Parameters of the Biograph PET/CT scanners evaluated (Jakoby et al., 2011, 2009) 
Scanner B-TPTV mCT B-TP 

 
Number of block rings 4 4 3 

Block detector per ring 48 48 48 

Detector elements 
dimension  

4x4x20 mm 4x4x20 mm 4x4x20 mm 

Detector Material LSO LSO LSO 

Total crystal number 32448 32448 24336 

Axial FOV  218 mm 218 mm 162 mm 

Transaxial FOV 680 mm 700 mm 605 mm 

Slice thickness 2 mm 2 mm 2 mm 

Number of image planes 109 109 81 

Coincidence time window 4.5 ns 4.1 ns 4.5 ns 

Energy window 425-650 KeV 435-650 KeV 425-650 KeV 

Energy resolution  11.7% 11.5% 12% 

Pitch size 4 mm 4 mm 4  mm 

Reflector thickness 
(estimated) 

0.4  mm 0.4  mm 0.4  mm 

Crystal length (thickness) 2  mm 2  mm 2  mm 

Detector ring diameter 856  mm 856  mm 856  mm 

CFOV -C. front of detector 42.80 cm 42.80 cm 42.80 cm 

 

Besides these existing scanners, a study was made of the effect of an increased 

number of rings in the performance of these scanners, with results for 5, 8 and 10 rings. 

As we mentioned earlier, we will focus on B-TPTV scanner geometry, because it is used to 

set the electronic parameters (i.e. integration time, triggers dead time, integration time etc.) 

to investigate other scanners and to validate our MC code (PeneloPET).  

The B-TPTV (Siemens Molecular Imaging) combines a 16-slice helical CT scanner 

(Somatom Sensation 16; Siemens Medical Solutions) with a whole-body LSO PET 

scanner.  Figure 3.1 presents the B-TPTV4. 

 

                                                
4 http://www.medical.siemens.com 
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                                (a)          (b) 

Figure 3.1. B-TPTV PET/CT scanner geometrized by Siemens (a) and a transverse section of the transaxial FOV 
of the scanner, with scintillations detectors (b) 
 

By using gview3D offered by PENELOPE we can visualize the scanner geometry. 

Figure 3.2 shows the B-TPTV scanner geometry as well as the NEMA test phantom at the 

center of the scanner. 

 

 
 
Figure 3.2. Scanner geometry of the B-TPTV scanner (detector modules) with the NEMA test phantom at the 
middle of the scanner. 

3.2.2. Performance evaluation of the B-TPTV PET scanner 

To objectively compare the performance of different clinical PET systems, they have 

been develops guidelines to allow an user, in the process of selecting a PET system, to 

obtain a relatively unbiased comparison of system parameters. We utilized the recently 

updated NEMA protocol NU 2-2007 (NEMA, 2007) which incorporates Watson’s 

suggestions for PET instruments with intrinsic radioactivity (Watson et al., 2003) to 
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compare spatial resolution, sensitivity, scatter fraction and noise equivalent count rate 

(NECR) to the experimental results. In addition, the stability of spatial resolution was 

measured. These performance parameters are seen as critical for good image quality. 

Comparison of these parameters for different commercial PET scanners can be found in 

these references: (Bailey, 2005b; Saha, 2010; Tarantola et al., 2003). 

In this thesis, acquisitions for the B-TP, B-TPTV and B-mCT PET/CT scanners (Jakoby 

et al., 2011, 2009), in addition to an extended axial FOV scanners (Table 3.3) were 

simulated with PeneloPET.  

Table 3.3. Characteristics of The PET Scanners Evaluated (from refs. (Jakoby et al., 2011, 2009) 

When simulating an existing scanner, it may be the case that not every parameter of 

the scanner is known with complete certainty. Often, details of the geometry, materials, 

acquisition electronics or the processing chain of coincidences are not available. Most 

often, the electronics acquisition performance is not known. But figures of this 

performance, such as prompt, randoms, true and NEC curves are available.  

PeneloPET includes simulations of acquisition electronics. Actually, it allows for 

different independent dead time sources. There is a singles dead time, which applies to 

every photon that reaches the scanner detectors. Further there is also a coincidences 

dead time, representing the further dead time involved in the processing of events 

identified as coincidences. Also, integration time, pile-up (and pile-up rejection) effects, 

(Vicente et al., 2012a, 2011) are included in PeneloPET.  

To asses the stability of PeneloPET for clinical scanners, we take the published values 

(Jakoby et al., 2009) for sensitivity, noise equivalent count (NEC) rate and TOF capabilities 

of the B-TPTV scanner to assess that the simulations are well set.  

In order to mimic the behaviour of a real PET scanner, where the full details of the 

Number of block  rings Axial FOV (cm) Maximum ring difference 
(MRD) 

B-TP (Jakoby et al., 2009) 16.2 27 

B-TPTV (Jakoby et al., 2009) 21.8 38 

mCT (Jakoby et al., 2011) 21.8 49 

5-rings 27.2 38 

8-rings 43.6 38 

10-rings 54.5 38 
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electronics may not be known, we use some of the parameters which define in PeneloPET 

the acquisition electronics, as effective fitting variables adjusted to reproduce the 

experimental random counts, prompt counts and NEC curves of the B-TPTV scanner. 

Once fitted to the B-TPTV data, these parameters are unchanged when simulating the 

other scanners. Well known parameters of the scanner electronics, such as coincidence 

time and energy window, were set to the actual values of the real acquisitions (Jakoby et 

al., 2009).

As further validation, predictions of sensitivity, NEC and scatter fraction for the B-TP 

and mCT scanners were compared to the published measurements. And finally, once the 

simulations have been setup and validated, they have been used to study the effect of 

varying parameters, such as crystal length, number of detector rings, energy resolution, 

coincidence time and energy windows, on the performance of Biograph scanner (B-TPTV).  

3.2.3. Sensitivity 

Acquisition method 

PeneloPET simulations were performed to estimate the system sensitivity, following the 

NEMA protocol NU 2-2007. A 70 cm long polyethylene tube with an inner diameter of 1 

mm was activated with 3.9 MBq of 18F. This activity is low enough to assure that dead time 

losses were less than 1% and that the ratio of random to true events was less than 5%. 

The sensitivity at two transaxial positions (0 and 10 cm) was obtained. Simulations 

accumulated more than 106 detected events at each position. The simulations employed 

the same maximum ring difference (27 and 38 for B-TP and B-TPTV, respectively, and 49 

for mCT) as the acquisitions of the real scanners (Jakoby et al., 2011, 2009).  

 
Figure. 3.3. Source emissions (green points) and interactions of the emitted photons with the detector crystals 
(red points). 
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In addition, the dependence of the sensitivity, on the number of block detector rings was 

explored. The simulations yield and estimation of the increase in sensitivity and count rate 

performance obtained with additional detector rings as well as with the increase of 

maximum ring difference. For the extended rings, one has to note that the maximum ring 

difference was kept constant to the same value as the one of the mCT scanner, namely 

48. Figure 3.3 shows the PeneloPET output simulation of B-TPTV, a line source emissions 

and interactions of the emitted photons with the detector crystals. 

3.2.4. Scatter Fraction (SF) and Noise Equivalent Count (NEC) 
Rate  

The SF is a critical component of the noise equivalent count (NEC) rate computation, 

widely used as a golden measure to optimize acquisition parameters such as timing and 

energy windows, and for making comparisons among clinical scanners. The fraction of 

coincidences that have scattered and yet are acquired within the applied energy window is 

known as SF (Bailey, 2005b). Scatter counts decrease image contrast, just like random 

counts. Following the NU 2-2007 protocol, the scatter fraction was measured from low 

activity simulations, where random counts are negligible (NEMA, 2007).  

Another important parameter of a PET scanner is the NEC rate that we described in 

Chapter 2 (section 2.6.5).  

NEC is plotted as a function of activity concentrations. The peak of the NEC curve 

depends on geometry, scanner materials, energy windows, and also on the acquisition 

electronics, mainly dead time and coincidence time window. In the simulation, the 

coincidence window was set to 4.5 ns, 11.7% energy resolution and the energy window 

was 425–650 keV. The simulated energy resolution was based on the reported energy 

resolution for LSO detectors (Jakoby et al., 2008).  

Acquisition method 

As we mentioned earlier we used NU 2-2007 protocol to determine both SF and NEC 

rate. A 70 cm long and 20 cm diameter polyethylene cylinder (see appendix A1) is placed 

with its isocenter in the isocenter of the FOV of the scanner.  A 70 cm line source is 

activated with 1.04 GBq of 
18

F (sufficient to achieve count rates beyond the peak of the 

NECR) and inserted axially into the cylinder whole, located 4.5 cm below the central 

phantom axis (see Figure 3.4). Data were simulated for 35 frames, spanning 10 hours of 

acquisition. 
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Figure 3.4. Positioning of the NEMA scatter phantom, used for the measurement of NEC and SF. 

3.2.5. Spatial resolution  
Acquisition method 

Again, the NU 2-2007 protocol (NEMA, 2007) was followed to determine the resolution 

from simulated acquisitions; an 18F activated point source with low activity in a glass 

capillary was modeled. The activity was low enough to assure a ratio of random to total 

events below 5%. Simulated data were acquired at two axial positions (center of the axial 

FOV and 1/4 off-center), at three (x, y) locations: (0, 1 cm), (10 cm, 0), and (0, 10 cm). The 

position of the point source is illustrated in Figure 3.5, where the spatial resolution was 

measured (NEMA, 2007) The acquisition time was long enough so that at least one 

hundred thousand counts were acquired for each position. The images were reconstructed 

using FBP (with ramp filter) from the sinogram data. The resulting images had 336 × 336 × 

109 voxels with a voxel size of 2 × 2 × 2 mm
3
.  

The resulting images analyzed as follows: for each of the six point source images, the 

FWHM and FWTM measured for each of the 3 directions x, y and z. All the measures in 

the x and y plane are referred to as transverse, while those in the z direction are referred 

as axial.  
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Figure 3.5. Arrangement of the six points sources in the measurement of spatial resolution. Three sources are 
positioned at the center of the axial FOV and three sources are positioned at one-fourth of the axial FOV away 
from the center. At each position, sources are placed on the positions indicated in a transverse plane 
perpendicular to the scanner axis (NEMA, 2007).	  
 

3.2.6. Time-of-flight (TOF) 

PeneloPET simulations allow us to control the time resolution of the scanner, by tuning 

an additional parameter (time jitter) that can be manipulated to produce the expected time 

resolution.  

Acquisition method 

Time difference distributions were obtained from a 1 MBq of 18F point source located at 

the center of the scanner. These distributions were fit to a Gaussian. The FWHM of the 

Gaussian was used as a measure of the TOF resolution.  

3.2.7. Impact of Scintillator Crystal size and Energy resolution 
and Coincidence Time Window on Scanner performance  

Two scanner parameters which could affect sensitivity were studied: crystal length and 

crystal energy resolution. The relationship between crystal length and sensitivity was 

investigated via simulations using crystals with an axial length from 2.0 cm to 5.7 cm. 

Furthermore, sensitivity as a function of energy resolution in the range of 10% - 50% was 

studied. In addition, several values for the lower energy level discriminator (LLD) were 

simulated with a constant value of 650 keV for the higher level energy discriminator. It is 

well known that the scatter fraction may decrease by increasing the LLD (Carney and 

Townsend, 2006). Furthermore another factor which can be affects the NEC and under the 

scope of this section is the coincidence time window. We assessed the effect of LLD and 

coincidence time window on both NEC and SF.  
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3.2.8. Impact of the Number of Detector Rings on the Scanner 
Performance 

The dependence of the sensitivity, NEC rate and SF on the number of block detector 

rings was explored. Variations of the Biograph PET scanner with the same geometry and 

characteristics but with additional block detector rings (from 3 to 10) were considered. A 

maximum ring difference of 38 was used for all scanners, except for the B-TP and mCT, 

for which maximum ring differences of 27 and 49, respectively, were employed. The 

simulations yield and estimation of the increase in sensitivity and count rate performance 

obtained with additional detector rings as well as with the increase of maximum ring 

difference. 

3.2.9. Uncertainty estimates  

When simulating existing PET systems, uncertainties due to statistical fluctuations can 

be reduced to a level of insignificance by running the simulation with large enough number 

of events. In addition, the existing physics models within PENELOPE (Salvat et al., 2008), 

have been validated against experimental data and are therefore not a significant source 

of uncertainties. Thus, simulated predictions can be obtained, which are within a few 

percent of the experimental results of the PET scanners (España et al., 2009). The main 

source of uncertainty in the simulation is the lack of precise knowledge of every parameter 

of the real scanners. It may be, for example, that exact information about scanner 

geometry and every material of the scanner, such as bed, shielding and covers is not fully 

known. Most often, only general geometry details and some performance results are 

readily available for commercial scanners. The same applies to the internal electronics and 

event processing chain. Thus, it is necessary to use simulations flexible enough to include 

parameters that can be optimized to reproduce the experimental performance results. In 

the case of the Biograph scanners, we have chosen the following performance 

measurements to optimize the simulations: 

1- Sensitivity. The measured sensitivity values for the B-TPTV scanner were taken as a 

reference. PeneloPET simulations, which employ the basic geometry definitions for this 

scanner (radius, block size, crystal dimensions) when assumed no reflector in between 

crystals, overestimate sensitivity by 12% (see Table 3.4). This could be due to a series of 

causes, for instance the radius of the actual scanner may be a few percent  larger than 

assumed, crystals may be slightly shorter, or sizeable attenuation of photons in front-

covers and bed may be present. Or also, there may be a small amount of reflector in 
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between scintillator crystals. Other authors indeed have chosen to modify the length or 

shape of the crystals (MacDonald et al., 2008). However, we have chosen to include a 

reflector thick enough (around 0.4 mm) to reproduce the B-TPTV sensitivity. We chose so 

because there is indication that a reflector is present in between crystals, according to 

brochures and pictures from the manufacturer of the scanner, and this small size of 

reflector is still consistent with published values for block and crystal sizes.  We make no 

claim that this result of the simulation implies that there is any amount of reflector in the 

real system.  

2- The measured sensitivity values to which we fitted the simulations include 

uncertainties of the order of 5%, which mostly originate from the uncertainty on source 

activities employed in the measurements (Jakoby et al., 2009), and therefore these 

uncertainties are translated into the sensitivity predictions of the simulations. Other 

predictions that depend mainly on the geometry of the scanner, such as scatter fraction 

then bear similar uncertainties. The comparison with measured results for other scanners 

supports this estimate. 

3- Count rate as a function of activity concentration curves. Reproducing the 

experimental behavior of the system would require very detailed knowledge of the 

acquisition electronics. As this information is not available, we have taken the trues, 

randoms and NEC rates as a function of activity concentration curves for the B-TPTV 

scanner as a reference to tune some of the parameters of the simulation defining the 

electronics. As it was the case for sensitivity, the 5% uncertainty of the activity of the 

source employed in the experimental measurements is then translated as uncertainty in 

the results of the simulation. In order to avoid regions in which additional bottlenecks (such 

as disk and computer dead-times) in the processing of events by the real scanners may 

arise, the fit of the simulations was done to data count rates below the peak of the NEC. In 

this region, the deviations of the tuned simulations from the data of the real B-TPTV 

system remained below 10%. We thus estimate the deviations of the predictions of the 

simulations for all other Biograph systems should remain below 10%, for count rates 

smaller than the NEC peak.  
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3.3. Results and discussion  

3.3.1. Sensitivity 
As mentioned before, simulations without crystal reflector would overestimate the 

experimental sensitivity quoted by (Jakoby et al., 2009) by 12%. This overestimation is 

also similar to the one reported by Jan et al. (Jan et al., 2005) who made a simulation  

study of ECAT EXACT HR+ clinical PET scanner and found a 10%, overestimation of the 

sensitivity predicted by the simulations. Also, Schmidtlein et al. (Schmidtlein et al., 2006) 

studied the GE Advance/Discovery PET scanner, and their simulations using GATE 

overestimated the sensitivity of the real scanner by as much as 20%. 

The use of a reflector thickness of the order of 0.4 mm yields good agreement with the 

measured sensitivity at several distances to the axis of the scanner. Indeed, an average 

sensitivity of 8.2 kcps, both at 0 and 10 cm off-center, was obtained with this assumption 

for reflector thickness, which was subsequently employed in all simulations in this work.  

Once this assumption is made, sensitivity of the B-TP and mCT are predicted within 2% 

of the experimental values. Table 3.4 presents the sensitivity for these systems, as well as 

for extended axial FOV systems. In general our simulated sensitivities for B-TP and mCT 

are in good agreement with the measured (Jakoby et al., 2011, 2009) ones. 

Table 3.4. Sensitivity results of the PeneloPET simulation as well as measured and the simulated results of 
different systems  

In Table 3.4 results for the sensitivity of scanners with 5, 8 and 10 rings are also quoted. 

The Biograph scanners have been simulated by Eriksson et al (Eriksson et al., 2007) using 

GATE, and thus we can also compare to the results of their simulations. They assumed no 

 
Sensitivity [kcps/MBq] @  0 and 10 cm off center 

Number of block  
rings 

Axial FOV (cm) Simulated (this 
work) 

Simulated  
(Eriksson et al., 

2007) 

Experimental 

B-TP 16.2 4.6 4.8 4.5 

B-TPTV 21.8 w/o reflector 9.2 
with reflector 8.2 

8.7 8.2 

mCT 21.8 9.8 
 

- 9.7 

5-rings 27.2 12.5 
 

- - 

8-rings 43.6 31.7 
 

 - 

10-rings 54.5 48.7 
 

47.8 - 
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reflector and obtained sensitivity for the B-TPTV about 6% larger than the experimental 

values (Table 3.4) and about 5% smaller than the one we obtain with PeneloPET under 

similar assumptions. They also predicted sensitivity for the B-TP and for a 10 rings 

Biograph that are within few percent of the predictions we show here. Thus we can 

conclude that for sensitivity our simulations are in reasonable agreement with the ones of 

Eriksson et al., within the uncertainties expected. 

From Table 3.4 one can also comment on the sensitivity increase for 5, 8 and 10 rings 

scanners. From 4 (B-TPTV) to 5 rings, the sensitivity would increase a 40%. With 10 rings, 

which corresponds to an axial FOV of 54 cm the sensitivity would increase by a factor 6. 

This result is similar to that obtained by Eriksson et al. (Eriksson et al., 2007) with GATE. It 

must be recalled that a maximum ring difference of 38 was employed for these cases, 

which corresponds to the value used in the B-TPTV scanners. For the simulation of B-TP 

and mCT, the maximum ring difference was set to 27 and 49, respectively.  

It must be recalled that a maximum ring difference of 38 was employed for these cases, 

which corresponds to the value used in the B-TPTV scanners. For the simulation of B-TP 

and mCT, the maximum ring difference was set to 27 and 49, respectively.  

3.3.2. Scatter Fraction (SF) and Noise Equivalent Count (NEC) 
Rate  

Figures 3.6 and 3.7 and Table 3.5 present the simulated and experimental results for 

randoms, trues and NEC rates for the B-TPTV scanner. Acquisitions according to the NU 

2-2007 protocol for NEC measurement (NEMA, 2007) were simulated with 4.5 ns 

coincidence time and 425–650 keV energy windows, as for the experimental systems.  

PeneloPET singles and coincidence dead-times were adjusted to reproduce the 

experimental random, trues, and NEC curve below the NEC peak.  

A  NECR peak of 161 kcps at a concentration of 32.5 kBq/ml was fitted to the 

experimental value of 161 kcps at a concentration of 31.5 kBq/ml (Jakoby et al., 2009). 

Certainly it would have been possible to match the NEC peak value and position of the 

simulations more closely to the experimental results if the whole range of data were 

employed in the fit; however one can see how at high activity concentrations, beyond 

approximately 33 kBq/ml, the experimental curves show a strong change in slope. This is 

very likely due to additional dead time losses at high count rates, perhaps associated to 

bottlenecks in disk data storage and CPU event processing, which are not considered in 
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the simulations. We thus fit the simulations only to data below 33 kBq/ml.  

The simulated peak true coincidences rate of 873 kcps appears then at 46 kBq/ml, 

compared to a measured true peak coincidence rate of 804 kcps at an activity 

concentration of 38 kBq/ml as seen in Figure 3.6. We consider that this difference between 

simulated and measured value of the true coincidences is a reasonable indication of the 

uncertainty in the simulated results for count rates versus activity curves, and it is of similar 

magnitude than the quoted error of 5% in the experimental activity (Jakoby et al., 2009).  

Once these measurements settled the parameters of the acquisition electronics in the 

simulations, they are employed unchanged for the other scanners analyzed in this work: 

BTP and mCT scanners and 5, 8 and 10 ring scanners. The differences between the 

simulated NEC peak values and the experimental ones are less than 3% for both BTP and 

mCT scanners. For the position of the NEC peak, a difference of 3% is observed for BTP 

and 14% for the mCT. This may be considered as a measure of the reliability of 

simulations for these performance figures. The corresponding NEC rate curves are plotted 

in Figure 3.7, along with the experimental ones. 

 

 
Figure 3.6. Comparison of random and true rate curves as a function of activity concentration predicted by 
PeneloPET simulations adjusted to the experimental results of the B-TPTV. The random rate curve has been 
multiplied by 0.4. 
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Figure 3.7 Comparison of NEC rate curves as a function of activity concentration of the fit of PeneloPET to the 
experimental data. All curves have been obtained with coincidence time and energy windows same as in (Jakoby 
et al., 2009, 2011). 
 

Table 3.5. Summary of values for NEC, and SF for different scanner configurations, according to simulations. In 

boldface are shown the results that were employed to fix some scanner parameters in the simulations. All results 
are obtained with a time coincidence window and an energy window same as the measured (Jakoby et al., 2011, 

2009). 

 

The fair agreement with experimental results of the simulated NEC peak for both BTP 

and mCT scanners gives confidence to predictions of NEC peak values for 5, 8 and 10 

rings quoted in Table 3.5. The NEC peak for the 10-ring system is 787 kcps at a 

concentration of 30 kBq/ml, also in good agreement with the simulated study (800 kcps @ 

31 kBq/ml) of Eriksson et al. (Eriksson et al., 2007). As expected, an increase in peak NEC 

rate can be observed for additional detector rings up to the point that the NEC peak for the 

10-ring system is five times larger than for the B-TPTV system. A similar behavior was 

Number 
of block  

rings 

NEC Peak (Kcps) @(kBq/ml) Scatter fraction (%) 

Simulated 
(this work) 

Simulated 
(Eriksson 

et al., 
2007) 

Experimental Simulated 
(this work) 

Simulated 
(Eriksson 

et al., 
2007) 

Experimental 

B-TP 90 @ 33 100@34 93@34 34.3 33 32.0 

B-TPTV 161@32.5 177@34 161@31.5 31.3 35 32.5 

mCT 177@34 - 180.3@29 34.8 - 33.5 

5-rings 259@39 - - 30.8 - - 

8-rings 489@35 - - 32.0 - - 

10-rings 787@30 800@31 - 33.1 35 - 
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also observed in simulations employing GATE (Eriksson et al., 2007) and SimSET 

(Badawi et al., 2000). 

Another prediction of simulations that can be compared to experiment is the SF. It is 

independent on electronics, being influenced only by time and energy windows and 

scanner and source geometry. The SF is estimated according to the NU 2-2007 protocol. 

The simulations and the experimental values for SF are within 4% (Table 3.5). One must 

note that the SF is a genuine prediction of the simulations, as no parameters have been 

fitted to reproduce it. The scatter fraction remains fairly constant for all the scanners 

simulated. 

Overall, our simulated results for SF and NEC obtained for the B-TP, B-TPTV and mCT 

PET scanners are in fair agreement with the experimental results (Jakoby et al., 2011, 

2009) and with simulations with GATE (Eriksson et al., 2007). 

3.3.3. Spatial resolution  

The FWHM and FWTM of the reconstructed point source images are reported in Table 

3.6 for showing simulated and experimental spatial resolution results of the B-TPTV 

scanner. For the simulations average spatial resolutions at 1 cm and 10 cm radial off-

center are 4.4 mm and 5.3 mm, respectively. They are in reasonably agreement with the 

experimental values of 4.4 ± 0.3 mm and 5.0 ± 0.3 mm (Jakoby et al., 2009). Other values 

reflected in Table 3.6 are in general also in agreement with the measurements.  

Table 3.6. Simulated and experimental spatial resolution for the B-TPTV scanner. Experimental results bear an 
uncertainty of ± 0.3 mm (Jakoby et al., 2009) 

 FWHM (mm) FWTM (mm) 
 Simulated Experiment Simulated Experiment 

1 cm off center 
Transverse 4.6 4.2 8.5 8.1 

Axial 4.2 4.5 8.4 9.2 

Average 
resolution 

4.4 4.4   

10 cm off center 

transverse radial 5.5 4.6 9.0 9.4 

Transverse 
tangential 

5.6 5.0 10.2 9.4 

Axial 4.4 5.5 7.5 10.5 

Average 
resolution  

5.3 5.0   
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3.3.4. Time-of-Flight (TOF) 

In Figure 3.8 TOF spectra obtained from simulations for a point source located at the 

center of the scanner is shown. For this centered source a peak appears centered at a 

ToF of 0 sec, as expected. As it was the case for other quantities related to the acquisition 

electronics, precise timing properties of every element of the scanner are not openly 

available. The timing performance of the scanner depends not only on the timing 

properties of the scintillator but also on the electronics and post processing of events. 

PeneloPET time stamps the detection events with the arrival time of the photons the each 

detector. To account for detector or electronics time jitter effects, there is an additional 

parameter in the input of PeneloPET which provides the standard deviation in ns for 

additional gaussian time jitter added to the time stamp of each event. With no additional 

time jitter, we obtain a FWHM in the time spectrum of about 53 ps, in agreement with what 

is expected from effective size, due to positron range effects in water, of a 18F source. In 

order to reproduce the reported TOF resolution of the Biograph scanners (Kadrmas et al., 

2009; Lois et al., 2010), of about 550 ps FWHM (see Figure 3.8) an additional jitter of 170 

ps is included in the simulations.. 

 
Figure 3.8. Gaussian fit of the simulated TOF distribution from a centered source. And additional time jitter of 
170 ps is employed in the simulations to produce a TOF resolution of 550 ps (FWHM) for the B-TPTV scanner. 
 

3.3.5. Impact of the characteristics of the scintillator crystal 
energy window and coincidence time window on the 
scanner performance  

Crystal length 

Crystal length is one of the parameter which induces the percentage of registered 
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coincidence and the sensitivity of the system. In this part we study the relationship 

between crystal length and sensitivity. According to (Eriksson et al., 2007) increasing the 

crystal length to 3 cm will result in a sensitivity gain of 1.4. The simulations were performed 

using different crystal lengths (from 2.0 cm to 5.7 cm) following the NEMA protocol 

explained earlier. 

A thin crystal with high stopping power will help reduce the distance travelled by the 

photon in the detector and reduce parallax effects. However, a thin crystal reduces the 

scanner sensitivity. The impact of varying crystal length on system sensitivity is shown in 

Figure 3.9. Up to a crystal length of 3 cm, a linear relationship between sensitivity and 

crystal length can be observed (black line). Beyond 3 cm, the increase of sensitivity seems 

to approach an asymptotical value. For the performance simulations, the same crystal 

length of 2 cm was used as employed in the actual scanners. With 3 cm of crystal, the gain 

increases by a factor of 1.5, similar to the simulated study of Eriksson et al. (Eriksson et 

al., 2007). 

 
Figure 3.9. Simulated sensitivity of the B-TPTV scanner as a function of the crystal length  
 

Crystal energy resolution 

Energy resolution is another factor which affects the sensitivity of the scanner. To 

achieve good image contrast and to reduce background, its important to have a good 

energy resolution scintillator (Levin et al., 2006). Here, we assess the impact of different 

energy resolution (from 10% to 50%) on the sensitivity of the scanner.  

The sensitivity as a function of crystal energy resolution is shown in Figure 3.10 for the 

same energy window of 425 to 650 keV. For a given energy window, sensitivity is affected 
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by the energy resolution. It can be observed that beyond an energy resolution of 20%, the 

sensitivity decreases linearly with increasing energy resolution. For an energy resolution of 

less than 20%, the sensitivity is barely affected. In our simulations we employed the 

reported energy resolution for LSO of 11.7% (Jakoby et al., 2008). 

 

 
Figure 3.10. Sensitivity of the B-TPTV scanner as a function of energy resolution for a fixed energy window of 
425 - 650 keV. 
  

Lower energy level discriminator (LLD) 

The scatter fraction in a 3D PET system is controlled by the energy window, especially 

the LLD setting. It is well known that the scatter fraction may decrease by increasing the 

LLD (Carney and Townsend, 2006). The closer the LLD is to the 511 keV photopeak the 

better the scatter rejection (Eriksson et al., 2004). How high we can set this without losing 

good counts depends on the energy resolution of the scintillators. Here we studied NEC 

and SF as a function of LLD values of (375, 400, 425, 450 and 475 keV) and a constant 

upper level discriminator (ULD) of 650 keV. 

Table 3.7 presents SF values for different LLDs. As expected, simulations with a wider 

energy window (375-650 keV) result in the highest SF while an LLD of 475 keV yields the 

lowest SF. These results agree with the simulated study of (Eriksson et al., 2007) as 

narrowing the energy window results in a reduction of SF. 
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Table 3.7. Simulated values for SF vs LLD for B-TPTV PET  scanner 

Figure 3.11 shows the resulting peak NEC rate for different LLDs. Less scatter events 

will be detected if the LLD is raised but raising it too much would also cause a loss of true 

events. Thus an optimal LLD value exists that maximizes the NEC. Indeed, an LLD of 425 

keV, as employed in the experimental systems, as it appears to yield the highest peak 

NEC rate (see Figure 3.11) according to our simulations. 

 
 
Figure 3.11 NEC rates as a function of the LLD for the B-TPTV scanner. 
 

Coincidence time window 

Coincidence events require that both photons from positron annihilation are detected by 

the system electronics within a certain time window (Cherry et al., 2003). The acquisition 

electronics has to allow for a coincidence time window large enough to include the actual 

TOF required for a photon to reach the detector ring. However, a too large coincidence 

time window may result in an increase of random coincidences. Therefore, the optimal 

choice of time coincidence window which yielded the maximum NEC was investigated. For 

this purpose, acquisitions with coincidence time windows of 4, 4.5, 5, 6 and 7 ns were 

considered. Other than for this study, a default 4.5 ns coincidence time window was 

employed for all other simulations in this work. 

Lower level discriminator  (keV) Scatter fraction (%) 

375 53.1 
400 46.8 
425a 31.3 
475 23.2 

a default value for the real scanner 
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Using too wide time coincidence windows will cause an increase in random events, and 

therefore the NEC count rate would decrease. However, a count rate reduction would 

follow from the use of too narrow coincidence time windows. Thus, again, there would be 

an optimum value of the time coincidence window. Simulated results of NEC curves for 

different coincidence time windows are shown in Figure 3.12. 4.5 ns yields the highest 

peak NEC rate. This is the default value employed the for B-TPTV scanner (Jakoby et al., 

2009). 

 
 
Figure 3.12. NEC curves with different coincidence time windows for the B-TPTV scanner. 4.5 ns optimized the 
highest value 
 

3.3.6. Simulation speed 

The computation time required to obtain PeneloPET simulations of  preclinical scanners 

has been already reported (España et al., 2009). Here we give an indication on the 

simulation speed for clinical settings, for which the amount of events that are simulated but 

do not result in recorded coincidences (due to attenuation, smaller sensitivity and scatter 

outside the smaller energy windows) is much larger. We quote the simulation speed for the 

setup employed to evaluate the NEC curve for the B-TPTV scanner, both at the peak of 

the NEC and near the end of the acquisition, with low activity and almost no random 

counts, that is near the origin in the NEC curve. In a single core of an Intel(R) Xeon(R) 

CPU E5-2650@2.00GHz it is possible to simulate 256 detected coincidences per wall 

clock second at the peak of the NEC and about 100 detected coincidences for the smallest 

activities with negligible fraction of random counts. This is with hyper threading on and no 

other user tasks running in the computer. The simulation speed for the same case with a 
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total of 16 PeneloPET threads working in the same processor achieves nearly 14 times 

higher simulation speed, that is, 3500 detected coincidences per second at the NEC peak, 

1,400 when there are no random counts detected, always per wall clock second. It is thus 

possible to obtain more than million counts in a couple of hours in a machine with one 

eight-core multi-threading processor.  

 

3.4. Summary and conclusion  
In this chapter we assessed the capability of PeneloPET to simulate clinical PET/CT 

systems. For this purpose, performance measurements of the B-TP, B-TPTV and mCT 

PET/CT scanners (Siemens Medical Solutions USA, Inc.) were simulated and the results 

compared with experimental data and results of other simulations.  

We have shown that PeneloPET is flexible enough to easily accommodate different 

dead time ingredients in the electronics, which have been optimized so that the 

experimental NEC curves for the B-TPTV could be reproduced. Once the simulation was 

set to reproduce the sensitivity of the B-TPTV scanner, predictions for scatter fraction 

derived from the simulation (Tables 3.4 – 3.5), agree within 5% with the measured values 

for the three scanners under investigation. Furthermore, the sensitivity and NEC rate 

curves for both the B-TP and mCT are also reasonably predicted, after fixing parameters 

of the simulations to the B-TPTV experimental rate curves. The simulated and 

experimental spatial resolution results were also comparable (Table 3.6). These 

performance results validate the use of PeneloPET to simulate the clinical scanners. 

Therefore, simulations were employed to investigate the variation of several basic scanner 

parameters on the performance of the B-TPTV system. For example, Figure 3.9 – 3.10 

shows an inverse relationship between crystal energy resolution and sensitivity, for a given 

energy window. Furthermore, the impact of the energy window on the system sensitivity 

was explored, as well as the effect on the peak NEC values and SFs. Simulations allowed 

the identification optimal choices of coincidence time and energy windows. For the B-

TPTV, the simulations confirmed that the default factory values of a 425 to 650 keV energy 

window and a 4.5 ns coincidence time window are the best choices. 

 The sensitivity of the PET system can be increased by adding more detector rings and 

also by increasing the maximum accepted ring difference. The good agreement of the 

simulations with the measurements on existing scanners, allow us to make reliable 
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predictions for scanners with larger number of rings or larger ring difference. The extended 

ring difference of the mCT PET scanner leads to a 19% increase in sensitivity compared to 

the B-TPTV scanner. The larger ring difference of the mCT also leads to a 10% increase 

of the peak NEC, compared to the B-TPTV (Table 3.5). These results are in agreement 

with previous simulation done with GATE (Eriksson et al., 2007) or with SimSET 

(MacDonald et al., 2008). We have shown that PeneloPET is capable of easily 

incorporating TOF properties of the scanners in the simulation. This is of paramount 

importance to describe modern clinical PET systems.  

In conclusion, we have shown that PeneloPET is suitable for simulating and 

investigating clinical systems. The Biograph TruePoint, TruePoint with TrueV and mCT 

PET/CT systems were simulated successfully in all aspects. 
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4. Image reconstruction  
4.1. Introduction  

In positron emission tomography, images are obtained using tomographic 

reconstruction methods from the measured projections of the object or the patient 

examined. As it was mentioned earlier in chapter two, PET images are usually 

reconstructed either analytically by algorithms like FBP or iteratively by algorithms like 

OSEM. Despite their high computational cost, iterative image reconstruction methods 

techniques are becoming more and more popular, as they can produce images of better 

contrast and signal-to-noise ratio (SNR) than the conventional FBP (Barrett et al., 1999; 

Riddell et al., 2001; Schiepers et al., 1997).  

In general, iterative reconstruction algorithms require two major steps, projection and 

back-projection. These two steps are repeated until a satisfactory image is obtained. This 

iterative process is time-consuming and it has been a major bottle-neck of these 

algorithms. One important advance that allowed the adoption of these methods was the 

appearance of algorithms like OSEM, in which image updates are made using just part of 

the data in each iteration. This way, the number of operations and the computational cost 

of each image update is considerably reduced. Additionally, the improvement in speed and 

memory of modern computers, as well as the possibility of using several processors in 

parallel also reduced the computational time required to reconstruct iteratively an image. In 

recent years, there have been several attempts to speed-up the reconstruction even more 

by using Graphics Processing Units (GPUs) (Herraiz et al., 2011).  

GPUs  have been proposed for many years as potential accelerators in complex 

scientific problems (General-Purpose Computing on Graphics Processing Units repository, 

2010) like image reconstruction, with large amount of data and high arithmetic intensity. 

Indeed, tomographic reconstruction codes are suitable for massive parallelization, as the 

forward and backward projection can be organized as single instruction multiple data 

(SIMD) tasks and distributed among the available processising units by assigning part of 

the data to each unit (Hong et al., 2007; Jones and Yao, 2004).  

In this thesis, image iterative reconstructions were performed with the code developed 

in our group, GFIRST (Herraiz et al., 2011) (see section 4.1), implemented in CUDA 

(Compute Unified Device Architecture NVIDIA CUDA Programming Guide v.2.5.0). 
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GFIRST is an adaptation of FIRST (“Fast Iterative Reconstruction Software for (PET) 

tomography”) (Herraiz et al., 2006) also developed in our group.  Additional improvements 

in the code have been implemented for this work, such as additional regularizations, PSF 

modeling and the possibility of using TOF information. 

Although TOF-PET was proposed and tested already at the early use of PET (Moses 

and Derenzo, 1999), it received little attention for many years, mainly because the fast 

scintillators required for TOF which were available at the early times provided very low 

sensitivity. In the last few years, interest was revived by the introduction of new scintillators 

such as LSO, with an attractive combination of properties (Kuhn et al., 2004; Moses and 

Derenzo, 1999; Moszynski et al., 2006; Surti et al., 2003), including fast timing 

characteristics, good stopping power, and high light output.  

With higher timing precision, PET systems can measure the TOF difference between 

two coincident annihilation photons with enough precision to be able to constrain the 

estimated location of the positron annihilation along the LOR. When the TOF information is 

included in the image reconstruction process, it can improve the image quality and the 

accuracy of the quantification, improving lesion detectability (Surti and Karp, 2009; Surti et 

al., 2006). 

Therefore, there is a high interest in TOF-PET because of the significant potential 

performance improvements that could be obtained compared to conventional PET, as it 

has been already shown in simulated data  (Harrison et al., 2005; Surti et al., 2006) and 

experimental measurements on TOF scanners.(Conti et al., 2005; El Fakhri et al., 2011; 

Lois et al., 2010; Muzic and Kolthammer, 2006; Surti et al., 2007; Watson, 2006) 

Most often TOF data are organized into sinograms, each event in the TOF data is 

assigned to a specific sinogram depending on the TOF for that event. There is, therefore, 

a complete set of 3D sinograms for each TOF bin. This timing information is then taken 

into account during the fully 3D reconstruction of the data. The image obtained 

incorporating the timing information can be directly compared with the image reconstructed 

without timing information, and the improvement in SNR can be assessed. 

In this chapter we present image reconstruction with GFIRST from data with and 

without TOF information, for the clinical PET-CT scanner Biograph True-Point with TrueV 

(B-TPTV) simulated in the previous chapter. Therefore, the goals of this part of the thesis 

were to demonstrate that GFIRST code can incorporate TOF information, and to 
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investigate the gain in image quality that can be achieved using TOF in different situations, 

with the help of realistic simulations. The quality of the reconstructed images have been 

estimated by measuring the image SNR and contrast in hot lesions (spheres <15 mm), as 

well as by the noise in the background, both with and without TOF.  

The chapter is organized as follows: section 4.1 presents the description of GFIRST. 

Methods and materials follow in next section (4.2), which includes a description of the 

image quality phantom used, the details of the FBP reconstruction, and the normalization, 

gap-filling, and attenuation corrections. We also describe in this section the modifications 

implemented in GFIRST during this thesis work, like the use of a PSF, regularization by a 

median filter and the use of TOF. Section 4.3 presents the main results, comparing SNR, 

contrast and noise of the images obtained in different cases. Finally, the conclusions are in 

Section 4.4. 

 

4.2. GFIRST: GPU-Based Fast Iterative Reconstruction of Fully 3-D 
PET Sinograms  

GFIRST (Herraiz et al., 2011) is an adaptation of FIRST (Herraiz et al., 2006), 

developed in our group. The main goal of GFIRST was to obtain a significant acceleration 

of the algorithm without compromising the quality of the reconstructed images, and with 

speed-ups large enough to compete with the reconstruction times obtained in a cluster of 

CPUs. The code is a rather straight-forward implementation of the MLEM algorithm, 

avoiding whenever possible clumsy GPU-specific coding, allowing edition and 

modifications with no significant effort nor deep knowledge of CUDA and GPU 

programming. Besides, the GPU code is as similar as possible to the CPU code, what 

makes it easier to handle and debug it. Indeed, approximations in the forward and 

backward projection kernels were avoided and the same system response matrix (SRM) 

as in the original CPU code was used, in order to avoid a loss of accuracy or artifacts in 

the final images. However, use of memory is optimized and the acceleration obtained is 

very noticeable.  

Unlike some previously proposed reconstruction codes implemented in the GPU (Pratx 

et al., 2009; Reader et al., 2002), which used list mode data, GFIRST was designed to 

work with sinograms (Fahey, 2002). Although list-mode data, for which all the relevant 

information from each detected coincidence is stored, might provide optimal images, 
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sinogram data organization also has some interesting features and advantages. 

Sinograms are commonly used in most of the current commercial scanners (Fahey, 2002), 

and they are often easily available to the user. Usually, their size is smaller than list mode 

files, so they are easier to handle and store. Furthermore, in a sinogram, data are spatially 

ordered and can thus be accessed in a simple and ordered way. This allows for very fast 

backward projection implementations. Finally, under certain approximations imposed by 

the sinogram, the simulated system exhibits many symmetries, thus reducing the size of 

the SRM. 

 
Figure 4.1. Flowchart of the implementation of the code in the GPU (Herraiz et al., 2011). 
 

GFIRST was implemented in CUDA, an application programming interface (API), which 

allows writing programs in C or Fortran language with extensions to execute part of them 

(CUDA kernels) on the GPU. Since forward and backward projections take up most of the 

reconstruction time, only these two steps are implemented as CUDA kernels called from 

the main reconstruction a Fortran code, running in the CPU. Figure 4.1 shows the data 

flow between CPU and GPU. 

Due to the large number of threads that can be executed in parallel on GPUs, the usual 

bottlenecks of these implementations are memory access. GFIRST uses texture memory, 

a kind of global memory available in the GPU that is allocated and indexed for fast access 

(Sanders and Kandrot, 2010). 

As shown in Figure 4.1, three 3-D textures are defined in GFIRST: one for the image 

being reconstructed, another for the SRM, and a third corresponding to the corrections 

obtained after comparing measured and estimated data. The SRM is uploaded into GPU 

global memory as a 3-D array and then attached to a 3-D texture at the start of the 
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program. Further information about GFIRST implementation can be found in (Herraiz et 

al., 2011). 

In order to control noise artifacts and drive the image estimate sequence toward a 

smoother convergence, several methods have been used to regularize the image updating 

mechanism in GFIRST. One of the methods of controlling noise in the images 

reconstructed is to add a smoothing step between iterations. In this work we apply a 

smoothing step by either convolution with a Gaussian or by applying a median filter (see 

section 4.3.9).  

 

4.3. Methods and materials  
The scanner employed for the simulation was the Biograph TPTV PET/CT (Jakoby et 

al., 2009). The TOF resolution of this system for a point source in air is 550 ps. Data was 

simulated with PeneloPET as described in the previous chapter and then rebinned into 

both non-TOF and TOF sinograms. Sinograms consisted of 336 x 336 x 559 bins 

(angualar, radial and sinogram planes respectively) for the non-TOF case, as well as for 

each temporal bin in the TOF case. TOF sinograms organization is described later in this 

chapter. 

4.3.1. Image quality phantom  

The NEMA image quality phantom (Figure 4.2) of 23 cm in diameter was used for all 

the simulations of this chapter. The four smallest spheres (diameters of 10, 13, 17, and 22 

mm) were filled with 18F at an activity concentration eight times higher than the background 

(5.3 kBq/cc as background and 42.4 kBq/cc for each small sphere). The two largest 

spheres, of 28 mm and 37 mm respectively, were filled with non-radioactive water and the 

central lung insert was filled with air. List-mode acquisitions were simulated with different 

number of counts to study the image quality with different levels of noise. The 

reconstructions, with and without TOF, were performed with 5 iterations of 5 subsets each. 

The image matrix size was 336 × 336 × 109 voxels (voxels size is 2mm). Lesion SNR, 

contrast and noise were studied as a function of iteration number for the small spheres 

(<15 mm) 



Chapter 4-                                                                                                 Image reconstruction 

 82 

 
Figure 4.2. Drawing of the phantom with hot and cold spheres and the central lung insert with no activity 
(NEMA, 2007). 

 

4.3.2. Organization of the TOF 3D PET data 

The output data in list-mode provided by PeneloPET, is a large binary file that includes 

for each coincidence event, the information regarding the coincidence type, the TOF and 

the coordinates of the event required to assign it to a sinogram bin.  We developed a code 

using ROOT5, to read this information from the list-mode data and using the same 

procedure as the one implemented in PeneloPET based on Michelograms (described in 

chapter 2), we can produce the sinograms with and without TOF.  

4.3.3. Sinograms 

In PeneloPET, the sinograms corresponding to different combinations of rings in which 

each of the gamma ray has been detected are grouped together using Michelograms as 

described earlier in chapter 2. Here, span refers to axial compression, while segment 

denotes the group of sinograms that have been assumed to have similar ring differences. 

The span number represents the ring difference between two adjacent segments. The 

sinogram is stored as a continuous file, starting from segment 0 (direct sinograms), and 

then continuing to segment +1, segment -1… until segment -3. Thus the corresponding 

tilting angle can be calculated by: 

� � �� �
� �	� 	� 	� 	�� �

�
det

span × zpitch
R + D

                                                    (4.1) 

where span is the span of the Michelogram, Zpitch is the pitch in the z direction, Rdet is the 

radius of the crystal ring, and D is the depth-of-interaction. 

The Biograph TPTV PET scanner uses 55 rings with a maximum ring difference of 38 

and up to 7 segments, using a span of 11. Therefore, the sinogram has 109 and 559 direct 

and indirect planes respectively. Figure 4.3 illustrates the Michelogram for this scanner as 
                                                
5 http://root.cern.ch/drupal/ 
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obtained from PeneloPET. Each line in this figure represents a sinogram.  

 
 
Figure 4.3. Michelogram of the Biograph TPTV scanner with span 11 and 7 segments. 
 

4.3.3.1. TOF sinogram  
The TOF information encoded in the list-mode data in the commercial Biograph PET-

CT scanner uses 78 ps time bins. The data is later reorganized into sinograms with 312 ps 

time bins: Four bins of 78 ps are added to form the 312 ps bins. Figure 4.4 illustrates this 

time alignment and TOF sinograms (from -1 to +1).  

 
Figure 4.4. Time alignment used in this thesis, as suggested by Siemens  
 

After reorganization of the data into sinograms with 312 ps time bins, data can be 

further assigned to conventional sinograms or TOF sinograms.  

In our case, working with simulations, we have used a similar criterium. We used a TOF 

sinogram with 13 TOF bins (each 312 ps wide) covering a total of 4.056 ns coincidence 

time window. Figure 4.5 shows an example of the 2D sinograms for different TOF bins 

(from -3 to +3) obtained with the image quality phantom.  
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Figure 4.5. Sinograms of the NEMA image quality phantom (TOF bins from -3 to +3, each 312 ps wide). 

4.3.4. FBP reconstruction  

The analytical reconstruction algorithm FBP is the standard way to obtain an image 

from a 2D sinogram (Brooks and Di Chiro, 1976). It is based on the central (or Fourier) 

slice theorem which relates the frequencies of the image in a particular direction with the 

frequencies of its projections (Defrise et al., 2005; Khalil, 2010; Phelps, 2006). It is a fast 

and linear method, which provides a standard reconstruction procedure. On the other 

hand, it also has the limitation of assuming an ideal emission and detection of the 

radiation, as well as Gaussian noise in the data. Although these assumptions are valid to a 

large extent in CT, they are not so realistic in PET. This is the reason why iterative 

algorithms, which overcome these limitations, have been more popular in PET than in CT.  

The FBP algorithm is simple. First, it applies 1D convolutions with a specific high pass 

filter to the radial distribution of each angle (Cho et al., 1974) and then performs the back-

projection of  the filtered projections to a common image plane.  

In this thesis, we developed a FBP reconstruction program which has been used to 

evaluate different results of this thesis. The program was implemented in MATLAB based 

on the iradon.m function provided in the Image Processing Toolbox of MATLAB. 

4.3.5. Normalization  

In order to obtain good reconstructed images, we have to include the normalization 

corrections in the reconstruction algorithms. This normalization takes into account the 

differences in the sensitivities of different bins of the sinogram. In Chapter 2 we explained 

methods used for normalization. In this thesis, the normalization factors were computed 

using a simulation of a uniform cylindrical phantom source of 18F covering the entire FOV 

of the Biograph scanner. Figure 4.6 shows the uniform phantom at the middle of the 

scanner and one of the transverse 2D sinograms obtained. Comparisons of normalized 
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and non-normalized sinograms are shown in Figure 4.7.  

 

 
Figure 4.6. Simulation of uniform phantom (normalization phantom) at the center of the PET scanner FOV (a); 
and simulated sinogram obtained (b). 
 

 
Figure 4.7. Image quality phantom sinograms; Before normalization (a) and after normalization (b)  
 

4.3.6. Gap filling  

It is important to take into account that the Biograph TPTV PET-CT scanner has 1 

crystal gap between detector blocks in the same plane, and 1 crystal gap between 

detector blocks in the axial direction. As a consequence, the bins in the sinogram 

connected with these gaps do not have any count. This is clearly illustrated in Figure 4.7. 

As analytical methods like FBP assume complete sampling in all projections, large artifacts 

are created in the images if these gaps are not filled before the reconstruction. 

Different methods have been proposed to fill the gaps in the sinogram (Herraiz et al., 
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2008; Karp et al., 1988; Tuna et al., 2010). In this thesis, we used an inpaint method for 

gap-filling using the library “inpaint-Nans” implemented in Matlab6. This tool is meant to fill 

holes represented with NaNs (Not a Number) in an image.  

The gap-filling procedure uses a mask (Figure 4.8b) created from the normalization 

acquisition. As in that case, the source is large enough to activate all the sinogram bins, 

those bins without counts in the normalization sinogram are considered gaps, and the 

value of these bins in any other acquired sinogram is set to NaN.  

The gap-filling process interpolates the missing data using the values around the gaps. 

In other words, the algorithm looks for NaN elements in the sinogram and performs a 

smooth interpolation to fill those elements (see Figure 4.8). A comparison of image 

reconstruction with and without normalization and gap-filling, as well as a profile through 

the images is shown in Figures 4.9 and 4.10 respectively. Clear visual and quantitative 

improvements are obtained with the gap-filling method.  

 

 
Figure 4.8. Example of a Normalized 2D sinogram with gaps (a); Mask used to define the gaps (b) and  gap-
filled sinogram (c). 
 
 

 
Figure 4.9. FBP reconstruction of the image quality phantom: without normalization (a), with normalization (b) 
and with normalization and gap filling (c).  
                                                
6 http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaintnans/content/Inpaint_nans/inpaint_nans.m 
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Figure 4.10. Radial profile of the small spheres of the image quality phantom  
 

4.3.7. Attenuation correction  

As we described in Chapter 2, the transmission of photons through any material can be 

characterized by a linear attenuation coefficient which depends on the photon energy and 

the atomic number of the material.  

The information of the attenuation of the annihilation gamma-rays through the patient or 

the phantom can be derived from a CT scan.  In this thesis we used a MATLAB code to 

create the water-filed cylinder (Figure 4.11) that represents the object present in the 

PeneloPET simulations. The values of the cylinder represent the attenuation coefficients in 

water for gamma rays with energy of 511 keV. We then used the projection of this 

phantom and to obtain the total linear attenuation in each sinogram bin, as it is shown in 

Figure 4.11. The final attenuation map is obtained as the exponential of the total linear 

attenuation. The significant improvement of images reconstructed with attenuation 

correction is shown in Figure 4.12. The profile of the largest sphere (22 mm) also 

demonstrated visually the improvement (Figure 4.13). 
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Figure 4.11. CT-based attenuation correction of PET emission data: attenuated cylinder (a), CT image (b), 
sinogram of the attenuation map obtained from the CT image (c) and profile of the sinogram (d). 
 

 
Figure. 4.12. Comparison of images reconstructed without (a) and with (b) attenuation correction. 
 
 

 
 
Figure. 4.13. Radial profile along the largest sphere of the reconstructed images with (red) and without (green) 
attenuation correction.  
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4.3.8. Resolution recovery with a PSF 

Blurring effects in PET such as positron-range, non-collinearity of the gamma rays, 

inter-detector scatter and crystal-size, among others, limit the maximum resolution 

achievable in reconstructed PET images.  

The blurring caused by these effects is not recovered when standard analytical 

methods like FBP are used, yielding images with suboptimal resolution. Although it is 

possible to apply some deconvolution methods to the sinograms before FBP is used 

(Herraiz et al., 2006) to enhance resolution, iterative methods are a more natural and 

flexible way to incorporate these resolution recovery methods in the reconstruction 

process.  

There are several ways to implement resolution recovery methods in a iterative 

tomographic reconstruction algorithm. In FIRST (Herraiz et al., 2006), this was obtained by 

a detailed modelling of the System Response Matrix (SRM), which contains the probability 

coefficients of the detecting a pair of gamma-rays in a LOR coming from a decay in a 

particular voxel. This realistic modelling allows for realistic forward-projection. The 

algorithm seeks for the image that, after being projected and blurred by all these effects, 

provides the projections that are statistically most compatible with the data acquired.   

As the modelling and storage of the SRM is challenging (Herraiz et al., 2006), many 

authors have used instead a Point Spread Function (PSF) (Bettinardi et al., 2011; Cui et 

al., 2011; Tong et al., 2010) that incorporates blurring effects in the reconstruction. The 

PSF is applied by a convolution in the image domain, which reduces significantly the 

computational cost of including the blurring effects in the reconstruction process. Although 

the use of the PSF is an approximation of the SRM, it represents an effective and practical 

way to take into account these effects.  

The PSF can be modelled with different levels of detail. It may be modelled with a 

simple and unique gaussian, but it may be also constructed such that it depends on the 

position in the FOV, it may be anisotropic, or even non-symmetric  (Fu and Qi, 2008; 

Herraiz et al., 2007; Tong et al., 2010). In this work, as we are primary interested in the 

study of TOF, a unique Gaussian PSF has been used along all the FOV.  

In order to improve the reconstruction method and increase the convergence rate of the 

algorithm, an unmatched forward/backward projector pair was used. This method was 

initially proposed by (Zeng and Gullberg, 2000) to increase the convergence rate of the 
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algorithm. Figure 4.14 shows the flowchart implementation of PSF in GFIRST.  

 

 
Figure 4.14. Flowchart of the implementation of RR-GFIRST code (Vicente, 2012). 
 

We have studied the optimal width for the PSF as the value that provides the images 

with the highest contrast as a function of noise for non-TOF images. This width has been 

then used in all the reconstructions of this thesis.  

We evaluated several values of the FWHM of the Gaussian PSF to be used in this work 

(see Figure 4.15), being the values measured in mm. 

It can be seen in Figure 4.15, that larger values of the PSF in the forward projection 

(PSF 2 and 4) yield higher contrast and larger values of the PSF in the backward 

projection (PSF 1 and 3) yield smoother images but with  slower convergence (i.e. the 

same level of contrast is obtained with higher number of iterations).  This means that with 

a larger PSF in the backward projection it can take several iterations more to reach the 

maximum, or at least a near-maximum value, of the objective function (likelihood).   
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Figure 4.15. Contrast and noise in the image quality phantom (using as reference the 17-mm spheres) for 
different number of iterations using different PSF values. Each point corresponds to one iteration. 

4.3.9. Regularization with a median filter 

One of the important problems of iterative reconstruction methods is that when the 

number of iterations is large, the images become too noisy. This is a well-known problem, 

and several solutions have been proposed in the literature. First, the total number of 

iterations can be reduced, limiting the noise in the images. In this case, the problem 

consists on how to define the optimal number of iterations. Different stopping rules have 

been proposed (Gaitanis et al., 2010), but as the convergence rate may differ in different 

regions of the image, the optimal value could not be the same for the whole FOV. Other 

approach proposed is to reconstruct the images with a large number of iterations to ensure 

that all regions have converged, and then apply a post-reconstruction smoothing of the 

image to reduce the noise (Nuyts and Fessler, 2002). The main drawback of this approach 

is its long computational cost. A different approach was to modify the reconstruction 

algorithm imposing some constraints in the level of smoothing of the reconstructed 

images. The family of these new regularized algorithms is usually known as Maximum-A-

Posteriori (MAP) reconstruction algorithms. One relatively straightforward way to modify 

the OSEM algorithm to incorporate the MAP methods, is by means of the One-Step Late 

(OSL) method (Green, 1990). In this case, after every iteration, the image is smoothed by 

applying a penalization to those voxels which deviates significantly from their neighbours. 

This is the method used in this thesis, using the median value of the neighbourhood of 

each pixel as a reference value. 
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In this thesis we extended the code to include the one-step-late approached proposed 

by (Green, 1990), using the median filter regularization. This method efficiently removes 

noisy patterns in the reconstructed images without blurring the locally monotonic structures 

(Schiepers et al., 1997). 

Similarly to the mean filter, the median filter considers each pixel in the image and looks 

at its nearby neighbors to decide whether or not its value may be representative of its 

surroundings. Instead of simply replacing the pixel value with the mean of neighboring 

pixel values, it replaces it with the median of those values. The median is calculated by 

first sorting all the pixel values from the surrounding neighborhood into numerical order 

and then replacing the pixel being considered with the middle pixel value. If the 

neighborhood under consideration contains an even number of pixels, the average of the 

two middle pixel values is used.  

Using the median filter has two main advantages over other filters like the mean filter. 

First, the median is more robust than the mean respect to outliers, as a single 

unrepresentative pixel in a neighborhood will not affect the median value significantly. 

Second, since the median value must actually be the value of one of the pixels in the 

neighborhood, the median filter does not create new unrealistic pixel values when the filter 

straddles an edge. For this reason the median filter is much better at preserving sharp 

edges than the mean filter.  

4.3.10. Incorporation of TOF information in GFIRST 

As described earlier in Chapter 2, including the TOF information in the image 

reconstruction can improve the image quality and the quantitative accuracy, thereby 

improving lesion delectability (Surti and Karp, 2009; Surti et al., 2006). Here, we extended 

GFIRST to incorporate TOF information, as GFIRST was initially  developed for non-TOF 

sinogram reconstruction (Herraiz et al., 2011). The code was adapted to include the TOF 

kernel, which only involved minor modifications, as GFIRST was designed to be flexible 

and easily modified. Figure 4.16 shows images reconstructed iteratively, (after 1 iteration 

of 5 subsets) and a profile thought the images along the 10 and 13 mm spheres of the 

image quality phantom, with and without TOF information. The improvement in image 

quality with TOF information is clear.   
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Figure 4.16: Profile of images reconstructed with and without TOF for 10 and 13 mm spheres after one iteration 
 

4.4. Assessment of the impact of TOF on image quality 
TOF reconstruction algorithms promise large improvement in image SNR (Rose, 1973) 

as reported by several literatures (Harrison et al., 2005; Manjeshwar et al., 2005). The 

localization of the annihilation point along the line of TOF allows the reconstruction 

algorithm to filter out coincidence events that have an inconsistent TOF value. This has a 

direct positive effect on the noise variance of the resulting image. Image quality for a 

certain system is defined as how good an image is for a particular task and an overall 

measure of a system performance (i.e., not just how well it collects counts). One class of 

image quality metrics called estimators (Barrett, 1990) consists of objective measures like 

SNR (Rose, 1973), contrast and noise variance (Karp et al., 2008; Tong et al., 2010).  

We computed the SNR as the difference between the lesion and background relative to 

the noise level in the background: 

Bσ
Signal - BackgroundSNR =                                            (4.2) 

where the signal is defined as the mean value in a region of interest (ROI) well inside the 

lesion, the background is defined as the mean value in a ROI localized in a fairly uniform 

area outside the lesion, and the noise in this formula is defined as the standard deviation 

of the value in the background ROI.  

The contrast is a measure of the convergence of an iterative algorithm, which tends to 

increase and converge towards an asymptotic ‘true’ value. The measured contrast 

deviates from the real value due to Partial Volume Effects (PVE) caused by the limited 

resolution of the image. As the resolution improves, the PVE is reduced and the contrast 

increases. The contrast is defined as: 

SignalContrast =
Background

                                                      (4.3) 

On the other hand, with iterative algorithms, noise increases monotonically with each 
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iteration. To make it easier to compare the noise among different acquisition, it is defined 

as the ratio between the standard deviation of the background and the background level 

(in %) 

BσNoise =
Background

 x 100                                                    (4.4) 

 

Acquisition method 

A NEMA image quality phantom (see section 4.3.1) was simulated. Several list mode 

acquisitions were simulated with different number of counts covering typical high and low 

statistics cases counts rates (970 x 10
6
, 112 x 10

6
, and 12 x 10

6
 counts). 

 A conventional version of the reconstruction algorithm (GFIRST) without TOF 

information was used to reconstruct non-TOF images and a version incorporating a TOF 

time resolution kernel was used to reconstruct the TOF images. Data were reconstructed 

with a high resolution mode, 336 × 336 × 109 voxels, and voxel size of 2 x 2 x 2 mm3. 

Main input information of the GFIRST algorithm is presented in appendix A2.  

Standard NU 2-2007 (NEMA, 2007) analysis was performed by drawing circular regions 

of interest (ROIs) on the spheres as well as on the background regions. The ROIs used for 

evaluating the background noise were manually defined. Twelve ROIs of the same size as 

the ROIs drawn on the hot spheres were drawn randomly throughout the background 

(Figure 4.17). Taking the mean value in each region, results in the average mean value of 

all regions were used for the calculations of SNR. A quantitative analysis was performed 

by estimating SNR as a function of the number of iterations in the reconstruction, and 

contrast as a function of noise for different numbers of iterations. 

 
Figure 4.17. Simulated NEMA image quality phantom with 12 background ROIs and one signal ROI (10 mm 
sphere) used to compute SNR, contrast, and background noise. 
 

The choice of the total number of iterations should ideally be matched to the statistics of 

the data. Hence both non-TOF and TOF reconstructions were performed with 1 to 5 

iterations and 5 subsets. The SNR was defined by equation (4.2), and contrast and noise 

were defined according to equations (4.3) and (4.4), respectively. For each sphere, SNR 
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was plotted as a function of iteration number, and contrast as a function of noise for 

different numbers of iterations. The gain in SNR (GSNR) due to TOF compared with non-

TOF that can be computed as the ratio SNRmax-TOF/SNRmax-nonTOF. 

 

4.5. Results and discussion  
Image quality assessment at high statistics (970 Mcounts) 

The results obtained in this section are representative of cases in which there is little 

noise in the acquired data, which correspond to acquisitions with a high injected activity 

and/or long acquisition time.  

A central slice of the reconstructed volume of the IQ phantom containing the hot 

spheres is shown in Figure 4.18 using five iterations. Improved image quality can be 

observed for the smallest lesion (10 mm sphere) when images are reconstructed using the 

TOF information. The SNR for the lesions smaller than 15 mm was studied and the results 

are shown in Figure 4.19, where lesion SNR is plotted as a function of iteration number. 

The maximum SNR was reached earlier for the spheres reconstructed with TOF than 

without TOF, where noise continues to increase. The non-TOF image takes longer to 

reach a value consistent with convergence. The iteration number that maximized the SNR 

of the smallest sphere lesion (10 mm) can be selected as a practical standard for further 

study. As can be seen in Figure 4.19, the maximum SNR for the 10 mm sphere using non-

TOF reconstruction occurred at iteration 4. When TOF is used, this maximum occurred at 

iteration 2, with an improvement in image quality.  

 

 
 
Figure 4.18.  Reconstructed images of the NEMA image quality phantom with 8:1 sphere-to-background ratio. 
Non-TOF images (a) and TOF images (b). Results for 1 to 5 iterations are shown, from left to right. 



Chapter 4-                                                                                                 Image reconstruction 

 96 

 
Figure 4.19:  Lesion SNR vs number of iterations for both TOF and non-TOF.  Each point corresponds to 1 
iteration with 10 subsets. 
 

Table 4.1. Contrast as a function of iteration number for the small spheres (shaded cells correspond  to 
maximum SNR obtained) 

In Table 4.1, the contrast is listed as a function of iteration number for the 10 mm, and 

13 mm spheres for both the non-TOF and TOF reconstruction (the contrast to background 

ratio used in the simulation was 8:1). It can be seen that for a given iteration number, 

contrast level is higher for the TOF cases compared with the non-TOF ones. The shaded 

cells correspond to the optimal iteration number for each reconstruction method according 

to the SNR as obtained from Figure 4.19. A 5 – 10% in contrast is seen for the TOF 

reconstruction, at the optimum SNR point. 

 
Iteration 

Contrast 
TOF Non TOF 

10 mm 13 mm 10 mm 13 mm 

1 2.8 4.0 1.8 2.3 
2 3.1 5.0 2.3 3.5 
3 3.9 6.2 2.6 4.3 
4 4.3 6.8 2.9 4.8 
5 4.6 7.5 3.0 5.2 
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Figure 4.20, shows the contrast as a function of noise for the 10 and 13 mm spheres 

(each data point correspond to 1 iteration with 10 subsets), for non-TOF and TOF 

reconstruction. It can be seen (Figure 4.20) that for a given iteration number, both contrast 

and noise levels are higher with TOF compared to non TOF, as a clear consequence of 

the faster convergence of TOF reconstruction. When the optimal number of iterations in 

each case is selected, a similar value for contrast is reached, being the main difference the 

amount of noise in the images.  For example, the 10 mm sphere has a contrast of 2.93 at 

4 iterations without TOF and 3.09 at 2 iterations with TOF, whereas the noise level at 

those iterations is 4.5% and 3.6% for the non-TOF and the TOF cases respectively.  

These  results are in agreement with previous studies  performed to assess the impact 

of TOF on image quality, like the one developed by Cristina Lois and collaborators (Lois et 

al., 2010) on a mCT Biograph scanner, and the experimental study performed in the B-

TPTV PET/CT scanner (Jakoby et al., 2012). In both cases, with TOF information a 

greater SNR is achieved for the same contrast level, yielding higher lesion delectability, 

mostly because noise is reduced. 

 
Figure 4.20. Contrast as a function of noise level for both non-TOF and TOF images (each data point 
corresponds to one iteration). The arrows indicate the selected iteration with higher SNR for each case.  
 

Image quality assessment at intermediate count statistics (112 Mcounts) 
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In this section we assessed the impact of the TOF information in the image quality in a 

case with less counts.   

Figure 4.21 shows lesion SNR plotted as a function of iteration number. We can 

observe the same behavior found with high number of counts, being the maximum of SNR 

reached earlier for the TOF-case than non-TOF one. The maximum SNR for both 10 and 

13 mm spheres using TOF occurred at iterations 2, while it is reached at iteration 3 for 

non-TOF reconstruction. We can see that in both cases, the SNR reached is lower than in 

the previous case, due to the lower number of counts.  The increase in the SNR for the 10 

mm sphere with TOF respect to the case without TOF one, varied from a 60% in iteration 

1, to a 6% in iteration 5. This result  agrees with the clinical study for liver lesions 

performed by George El Fakhri (El Fakhri et al., 2011). 

 
Figure 4.21:  Lesion SNR vs number of iterations for both TOF and non-TOF. Each point corresponds to 1 
iteration with 5 subsets. 

In Table 4.2, noise and contrast are listed as a function of iteration number for the 10 

and 13 mm spheres, both for non-TOF and TOF reconstructions. It can be observed that 

for a fixed iteration number, both contrast and noise level are higher for TOF compared 

with non-TOF, as a consequence of the faster convergence of the TOF reconstruction. 

When the optimal number of iterations for the SNR in the lesions is selected, a similar 
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value for contrast is reached with the two methods. For example, the 13 mm sphere has a 

measured contrast of 3.81 at 3 iterations without TOF and 3.87 at 2 iterations with TOF, 

being the noise level lower in TOF reconstruction: 5.41% without TOF respect to 5.04% 

with TOF.  

Table 4.2 Contrast and background noise for each iteration (shaded cells corresponds to maximum SNR 
obtained above) 

 

Image quality assessment at low count statistics (12 Mcounts) 

In this case, we considered acquisitions with low number of detected coincidences, 

which are often found in studies with low injected activity, or low acquisition times, that 

may occur in a single frame of dynamic studies. 

Figure 4.22 and Figure 4.23 present SNR as a function of iteration number and contrast 

as a function of noise level, respectively. As expected, SNR in these acquisitions is lower 

than in the previous simulated studies. Nevertheless, the behavior of SNR and contrast for 

both non-TOF and TOF reconstructions is similar to previous cases. For instance, the 

maximum SNR is reached at iteration 2 with TOF compared to the 3 iterations required 

without TOF, as Figure 4.21 shows. 

Furthermore, lesion detection SNR was significantly higher for all iterations for TOF 

than for non-TOF.	  The contrast when using TOF is higher compared to the non-TOF case. 	  

 
Iteration 

Contrast Noise (%) 

TOF Non-TOF 

10 mm 13 mm 10 mm 13 mm TOF Non-
TOF 

1 2.3 3.3 1.8 2.4 4.4 3.9 

2 2.8 3.9 2.3 3.3 5.0 4.5 

3 3.3 4.4 2.7 3.8 6.0 5.4 

4 3.6 4.6 2.9 4.1 6.9 5.8 

5 3.8 4.7 3.0 4.5 7.5 6.9 
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 Figure 4.22. Lesion SNR respect to  number of iterations for both TOF and non-TOF reconstructions. Each 
point corresponds to 1 iteration with 5 subsets. 

 
Figure 4.23. Contrast as a function noise for both non-TOF and TOF. Each data point corresponds to one 
iteration.  



Chapter 4-                                                                                                 Image reconstruction 

 101 

4.5.1. Comparison of TOF and non-TOF results

Table 4.3 Contrast and background noise comparisons for 10 mm spheres of the non- TOF and TOF  images for 
the 3 different studies, each value corresponsd to the optimal number of iterations as obtained from the SNR for 

both TOF and non-TOF. 

Counts 
(Mcts) 

Contrast Noise % SNR/iteration

970 112 970 112 12 12 970 112 12 

Non-
TOF 

2.9 2.7 2.9 2.7 2.6 2.6 4 3 3 

TOF 3.1 2.8 3.1 2.8 2.8 2.8 2 2 2 

 

Table 4.3 presents the comparison between contrast as a function of noise of the 10 

mm spheres in all the studies performed above. We can observe that, as expected, the 

contrast obtained in the three studies with TOF is higher than for non-TOF reconstructions, 

whereas the noise increases as the number of counts is reduced, being lower for TOF 

studies.  

 
Figure 4.24:  Lesion SNR vs number of iterations for the 10 mm spheres for both TOF and non-TOF 
reconstructions. 

 

Figure 4.24 shows the SNR of the 10 mm spheres for both non-TOF and TOF 
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reconstructions. It is clear that, as expected, the high-counts study has significantly higher 

SNR compared with the low-statistics one for both cases.  

Furthermore form Table 4.4 it can be observed that the SNR gain when using TOF is 

larger for the high-counts study, compared with the lower statistics one. The maximum 

SNR gain for the high-statistics (970 Mcounts) is 21% larger for the smallest sphere (10 

mm) at 112 Mcounts and 27% for the 12 Mcounts at iteration 2. Our results of SNR Gain 

(Table 4.4) agree with the clinical study by (Lois et al., 2010) where they obtained a SNR 

gain in TOF images with a range of  1.2 to 2. 

 TOF reconstruction converged faster than non-TOF and resulted in lower image noise, 

which agrees with study performed (Kadrmas et al., 2009) to asses TOF performance in a 

clinical study.  

Table 4.4. SNRgain of the 10 mm spheres, each value correspond to optimal number of iterations as obtained from 
the maximum SNR for both TOF and non-TOF  

4.6. Conclusion  
This work, based on simulation studies using the image quality phantom, focused on 

the assessment of image quality obtained with TOF incorporated into the reconstruction, 

particularly in small lesions (spheres <15 mm). The reconstruction method used was 

based on GFIRST, using the OSEM3D algorithm with a Gaussian PSF for modeling the 

system-response-matrix, a median filter for the regularization and incorporating TOF 

information.  

It is well known that, working with iterative algorithms, there is a trade-off between 

contrast and noise. For GFIRST we identified the number of iterations required to achieve 

the optimal SNR, which was different for non-TOF and TOF reconstructions. This was 

expected, due to the better localization of the annihilation events when TOF is included. 

The appropriate number of iterations that offer a good trade-off between contrast and 

noise was explored at high and low statistics. In all these studies, TOF reconstruction 

converged faster and resulted in lower image noise. 

The iteration number which maximized the SNR for small lesions was identified to be 2 

for TOF reconstruction for high and low counts. For non-TOF reconstructions SNR was 

Counts 
(Mcts) 

970 112 12 

SNRgain 2.0 1.6 1.5 
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best at iteration 4 for high counts and at iteration 3 for lower counts. It is interesting to note 

that this criterion provided images which reached similar contrast, but the TOF image had 

the advantage of a lower noise level.  

The goals of this work were to demonstrate that GFIRST is flexible to incorporate TOF 

information, and to investigate the gain in image quality with TOF. Our GFIRST framework 

was validated for non-TOF sinograms reconstruction in a previous work, (Herraiz et al., 

2011). Here, we further demonstrate that the same GFIRST framework can be utilized for 

reconstructing TOF PET data using the sinograms. GFIRST is flexible to include PSF, 

median filter and TOF information, in addition to low reconstruction time (around 1 minute 

per iteration), so that it could be used for real clinical TOF PET scanners. 

Furthermore, this work has demonstrated with phantom studies that the incorporation of 

TOF information results in a more rapid convergence of the reconstruction algorithm, and 

lower noise for the same contrast. It has been shown quantitatively that the SNR gain due 

to TOF has the greatest effect in high counts studies. 
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5. Summary and conclusions  
In this final chapter the main contributions of this thesis are summarized, and the 

conclusions derived from the results of this work are presented. 

MC simulations have been proven to be a very useful tool to study imaging 

characteristics and parameters of PET scanners that in some cases cannot be directly 

measured experimentally. The design of new PET scanners is one area that benefits from 

extensive simulations (as shown in chapter 3), as well as improved data analysis, 

correction techniques and image reconstruction algorithms assessment (chapter 4) among 

other applications. 

The main contributions of this thesis are: 

• A PET Monte Carlo simulation tool (PeneloPET) has been extended and validated 

for clinical scanner. Simulations of acquisitions mimicking the NEMA protocol for 

measuring sensitivity, NEC and SF were performed. We have shown that 

PeneloPET is flexible enough to easily accommodate characteristics of the 

electronics, which have been adapted to reproduce the experimental NEC curves 

of the B-TPTV scanner. Once the simulation was set to reproduce the sensitivity of 

the B-TPTV scanner, predictions for scatter fraction derived from the simulation, 

agree with the measured values for the three scanners of the same family under 

investigation. Furthermore, the sensitivity and NEC rate curves for both the B-TP 

and mCT are also reasonably predicted.  

• With PeneloPET we were able of assessing the impact of the modification of some 

parameters of clinical scanners on their performance. We studied the performance 

of the PET scanners using sensitivity, NEC and SF as figures of merit. For 

instance, the impact of the energy window on the system sensitivity, the NEC peak 

value and SFs was studied in detail. Simulations allowed the identification of 

optimal choices for coincidence time and energy windows. In general, the optimal 

values obtained correspond to the ones being used in the real scanners. 

• We have shown that PeneloPET is capable of incorporating TOF properties of the 

scanners in the simulation. This is of paramount importance to describe modern 

clinical PET systems. 
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• The reconstruction software GFIRST was modified to incorporate TOF information, 

and with it we investigated the gain in image quality that can be achieved using 

TOF in different situations. 

• The incorporation of TOF information results in more rapid convergence of the 

reconstruction algorithm, better image contrast, and lower noise. Furthermore, it 

has been shown quantitatively that the SNR gain due to TOF has the larger effect 

in higher counts acquisitions. 

 

5.1. Final Conclusions 
As a summarizing conclusion, with this thesis we have completed the set of tools for the 

improvement of clinical PET scanners, both in the simulation and reconstruction arena. 

TOF properties of the scanner have been incorporated and a GPU reconstruction code, 

extremely fast and very accurate, able for clinical settings, has been set. The results 

obtained in this thesis paved the way for the ongoing and future developments of the 

group where this work has been carried out, Indeed, the availability of a very fast 

reconstruction code opens up the possibility for high quality on-line (even list-mode) image 

reconstructions and for the incorporation of powerful data correction techniques. This will 

show up in coming projects in collaboration with the long-standing partners at LIM 

(Gregorio Marañón Hospital) with clinical teams specialized in PET imaging at the 

Massachusetts General Hospital (Boston) and the Hospital Clínico (Madrid). 
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Summary 
 

SIMULATION AND 
 IMAGE RECONSTRUCTION  

OF CLINICAL TOF-PET SCANNERS  
 

Khaled M A Abushab 
 

Positron emission tomography (PET) is the most sensitive molecular imaging technique. Positron-
emitting radioisotopes are used to label molecules of interest (tracers) which are injected in small 
amount into a patient for clinical examinations and medical research in vivo. The tracer will distribute in 
the body according to its particular physiological pathway and its distribution can be imaged in a PET 
scanner by measuring and localizing the two gamma-rays originated from the annihilation of the 
positron emitted by the radioisotopes.  

Although PET was originally used as a research tool for the study of the biodistribution of many 
different radiotracers, in recent years it has become very important in the clinical practice, especially in 
oncology. Most of the clinical PET studies today use 18F-FDG as a radiotracer, as this allows 
measuring glucose metabolism, which is known to be significantly enhanced in most tumors. The 
combination of PET images with anatomical information provided by a CT scanner in combined 
PET/CT scanners, has been an important step towards its use in the clinic.  

The recent introduction of a new generation of PET/CT scanners with fast scintillators and good 
stopping power for 511 keV photons has been another significant improvement in the technique. 
These scanners may use the difference between the arrival times of the pair of photons originating 
from positron annihilation (Time-of-Flight information) to improve the quality of the reconstructed 
image. Therefore, Positron Emission Tomography (TOF-PET) may improve the image signal-to-noise 
ratio (SNR) and therefore, the detectability of lesions in the images.  

Nevertheless, there are still some limiting factors for a wider use of the technique. On one hand, 
PET needs non-stable isotopes which decay emitting a positron, and therefore for isotopes like 18F, 
this requires a cyclotron which can produce the isotopes by collision of accelerated particles. This 
problem is being addressed by the construction of more cyclotrons which could provide the required 
isotopes for most of the large hospitals. Other problem of PET is its relative poor resolution (about 5 
mm) compared with other imaging modalities like CT or MRI. New scanners with are being designed 
to improve this resolution. And finally, there is a need for reducing the amount of radiation injected into 
the patients for a PET scanner, in order to minimize the possible side effects of the radiation. This is 
being solved by the use of new scanner designs with higher sensitivity and better localization in the 
patient of the detected events with the TOF technique, which allows obtaining images with similar 
quality with lower radiation doses to the patient. This thesis is focused on the study of some of these 
new designs with simulations and the evaluation of the improvement obtained by the new TOF-
PET/CT scanners in different situations. 

Monte Carlo (MC) methods give us a chance to estimate scanner properties which cannot be 
obtained experimentally, as well as well as testing the changes in the performance of PET scanners 
due to changes in the scanner, without having to builds all these prototypes. PeneloPET is a MC code 
based on PENELOPE (also a MC code), for PET simulations which considers detector geometry, 
acquisition electronics and materials, and source definitions. This tool is used for the simulation of 
transport of electrons, positrons and photons, with energies up to 1 GeV. PeneloPET is a code for 
PET simulations with basic components of detector geometry, acquisition electronics and material and 
source definitions. MC simulations are widely used in PET for optimizing detector design, acquisition 
protocols, and for developing and assessing corrections and reconstruction methods. 
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This thesis is based on PeneloPET simulations of several acquisitions with some of the last 
generation TOF-PET/CT scanners. One of the main goals of this thesis is to validate PeneloPET, 
which have been already validated in preclinical scanners, with clinical PET scanners. Thus, we used 
PeneloPET to simulate the Biograph TruePoint (B-TP), Biograph TruePoint with TrueV (B-TPTV) and 
Biograph mCT PET/CT scanners. These configurations consist of three (B-TP) and four (B-TPTV and 
mCT) rings of 48 detector blocks. Each block comprises a 13 × 13 matrix of 4 × 4 × 20 mm3 lutetium 
oxyorthosilicate (LSO) crystals. Simulations were adjusted to reproduce some experimental results 
from the actual scanners and validated by comparing their predictions to further experimental results. 
Sensitivity, spatial resolution, noise equivalent count (NEC) rate and scatter fraction (SF) were 
estimated. The simulations were then employed to assess optimum values of system parameters, 
such as energy and time coincidence windows and to evaluate the effect of system modifications 
(such as number of rings) on performance. Furthermore we checked the capability of the PeneloPET 
code to incorporate TOF of the scanners. 

We have shown that PeneloPET is flexible enough to easily accommodate different dead time 
ingredients in the electronics, which have been optimized so that the experimental NEC curves for the 
B-TPTV could be reproduced. Once the simulation was set to reproduce the sensitivity of the B-TPTV 
scanner, predictions for SF derived from the simulation, agree within 5% with the measured values for 
the three scanners under investigation. Furthermore, the sensitivity and NEC rate curves for both the 
B-TP and mCT are also reasonably predicted, after fixing parameters of the simulations to the B-TPTV 
experimental rate curves. The simulated and experimental spatial resolution results were also 
comparable.  

These performance results validate the use of PeneloPET to simulate the clinical scanners. 
Therefore, simulations were employed to investigate the variation of several basic scanner parameters 
on the performance of the B-TPTV system. We have shown that PeneloPET is capable of easily 
incorporating TOF properties of the scanners in the simulation. This is of paramount importance to 
describe modern clinical PET systems.  

This thesis also studies the impact in the reconstructed images of the TOF information. PET images 
map the origins of photons emitted from the patient. If the PET scanner detects these two photons 
within a particular interval of time, called the coincidence window, it will record a line of response 
(LOR) that connects the points where the two photons were detected. The collection of LOR data is 
referred to as the projection data. We used our GFIRST code based fully 3D iterative reconstruction 
3D-OSEM in addition to investigate the gain in image quality that can be achieved using the TOF 
information in different simulated cases. We estimate image SNR and contrast in hot lesions (spheres 
of less than 15 mm in diameter), as well as background noise in reconstructed images, both with and 
without TOF information.  

In this thesis we have demonstrated the benefit of TOF information in PET scanners based on a 
simulated phantom. We found that TOF information in our reconstructed code yields better image 
contrast and lower noise, and also that TOF reconstructed achieved larger SNR than without TOF. It 
has been shown quantitatively that the SNR gain due to TOF has the greatest effect in high counts 
statistics. 

As a summarizing conclusion, this thesis shows that PeneloPET is a powerful tool for simulating and 
design clinical PET scanners. Furthermore, the reconstruction code, GFIRST has shown enough 
flexibility to incorporate TOF information and study its impact on the reconstructed image quality. The 
combination of these tools presented in this thesis can be used to develop new clinical scanner 
designs that could provide images with better resolution, better lesion detectability and requiring lower 
radiation dose to the patients.  

 

          Supervisors:    José Manuel Udías Moinelo 
                                    Joaquín López Herraiz 
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APPENDICES 
Appendix A1: 

NEMA NU 2-2007 scatter phantom  
 
The NEMA NU 2-2007 Scatter phantom (NEMA, 2007) is designed in accordance with the 
recommendations by the National Electrical manufacturers Association (NEMA) to 
standardize the measurement of count rate performance of a scintillation camera in the 
presence of scatter. Scatter Phantom is a 70 cm long polyethylene cylinder with a diameter 
of 20 cm. A line source filled with radioactivity and inserted into the phantom at a radial 
distance of 4.5 cm.  
 
 

 
 
 

Figure A.1. NEMA NU 2-2007 scatter phantom diagram (NEMA, 2007). 
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Appendix A2: 
Main input data of GFIRST for Biograph scanner (B-TPTV), here it is implemented all 

information regarding to TOF bins PSF and median filter in addition to number of iterations 
and subsets as well as image resolution. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

static const float PI = 3.1415926f; 
 
// PARAMETERS OF THE DATA ----- 
static const int NTBINS =13;        // Number of TOF Bins 
 
static const int NRAD = 336;         // Number of radial bins 
static const int NANG = 336;         // Number of angles 
static const int NROWS = 55;         // Number of "rings" 
static const int SPAN = 11;          // Span of the sinogram (11 = Differences 5 and 6) 
static const int NSINOGS = 559;                  // Number of sinograms 
static const int NSEGMENTS = 7;                // Number of segments 
static const int NDATA = NSINOGS*NANG*NRAD;     // Total number of bins in the sinogram 
//static const int MAXRINGDIF = 38;   // Maximum ring difference of the sinogram 
 
// PARAMETERS OF THE RECONSTRUCTED IMAGE ----- 
static const int RES =336;                                   // X-Y resolution 
static const int NZS = (2*NROWS-1);               // Z number of slices 
static const int NVOXELS=RES*RES*NZS;   // Total number of voxels in the image 
static const int NPT = RES; 
static const int NZSM = NZS/2; 
 
// PARAMETERS OF THE RECONSTRUCTION 
const int NITER = 5; 
const int NSUBSETS = 5;    
const int NDATA_PART = NZS*NRAD;      // Number of LORs projected simultaneously 
float PSF_FW = 7.0;      // PSF for forward  (voxel units) Large = More Resolution 
float PSF_BW = 5.0;     // PSF for backward (voxel units) Large = Smoother / Slower convergence 
 
//  PARAMETERS OF THE SCANNER ---------------- 
__device__ __constant__ float pitch = 4.0f;                          // (mm) 
__device__ __constant__ float DIAM_DET = 856.f;             // Distance between detectors (mm) 
__device__ __constant__ float FOV = 680.f;                         // Field of View (mm) 
__device__ __constant__ float TOF_FOV = 680.f;               // Field of View of the TOF (mm) 
__device__ __constant__ float beta = 0.1f;                            // MEDIAN FILTER 
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Resumen en castellano  
 
 Introducción y Objetivos 

La tomografía por emisión de positrones (PET) es una de las técnicas de imagen molecular con 

mayor sensibilidad. Su mayor ventaja consiste en que permite medir la distribución de moléculas de 

interés en el cuerpo humano, suministradas en cantidades suficientemente pequeñas como para 

no afectar los procesos fisiológicos normales que se busca estudiar. Se basa en el uso de 

radioisótopos emisores de positrones para marcar la molécula en estudio (trazador) que se inyecta 

en una pequeña cantidad al paciente o animal para realizar exámenes clínicos y de investigación 

en vivo. El trazador suministrado se distribuye en el cuerpo siguiendo sus determinadas vías 

fisiológicas, y se usa el escáner PET para obtener una imagen de esta distribución mediante la 

medición y localización de los dos rayos gamma que se originan a partir de la aniquilación del 

positrón emitido por cada radioisótopo. 

 
Figura R.1. Esquema básico de la técnica PET, en el que un paciente, tras haberle sido suministrado 
un radiotrazador, se coloca en el escáner para obtener una imagen de la biodistribucion del trazador a 
partir de la radiación medida. Los positrones emitidos terminan generado un par de rayos gamma 
antiparalelos. La detección de dos rayos gamma en detectores opuestos en un corto periodo de 
tiempo (coincidencia), permite estimar que en algún punto de la línea que une ambos detectores 
(LOR) existe un radiotrazador que se ha desintegrado. A partir del conjunto de todas las medidas 
recogidas por el escáner se obtiene la imagen final mediante un proceso conocido como 
reconstrucción de imagen.  
 

Aunque la técnica PET se utilizó originalmente como una herramienta de investigación para el 

estudio de la biodistribución de diferentes radiotrazadores, en los últimos años, se ha convertido en 

una técnica cada vez más importante en la práctica clínica, especialmente en oncología. La 

mayoría de los estudios clínicos actuales usan 18FDG como radiotrazador, ya que permite estudiar 

el metabolismo de la glucosa, que es significativamente alto en la mayoría de los tumores. La 

combinación de las imágenes de PET con la información anatómica proporcionada por un escáner 

CT, en máquinas de doble modalidad (PET/CT) ha sido un paso muy importante hacia su uso más 
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habitual en clínica. Asimismo, la reciente introducción de una nueva generación de escáneres 

PET/CT con centelladores rápidos y con alta sensibilidad para detectar fotones de 511 keV,  ha 

sido otra importante mejora en la técnica. Estos escáneres pueden utilizar la diferencia entre los 

tiempos de llegada de la pareja de fotones procedentes de la aniquilación de positrones 

(Información de Tiempo de Vuelo –TOF-) para mejorar la calidad de las imágenes reconstruidas. La 

técnica PET-TOF puede en principio mejorar significativamente la relación señal ruido de las 

imágenes y por lo tanto, la mejora en la detección de lesiones. 

 

 
Figura R.2 Uso de la información de tiempo de vuelo para mejorar la localización a lo largo del LOR 
del lugar donde se ha producido la desintegración. La medida de las diferencias de los tiempos de 
llegada t1 y t2 a los detectores con suficiente precisión, permite saber si la desintegración se ha 
producido más o menos cerca de cada detector. 
 

No obstante, existen todavía algunos factores que limitan un uso más amplio de la técnica PET. 

Por un lado, para realizer un estudio PET se necesitan isótopos no estables que se desintegren 

emitiendo un positrón, y por lo tanto, para los isótopos como el 18F, esto requiere un ciclotrón que 

pueda producir estos isótopos. Este problema está siendo solucionado mediante la construcción de 

más ciclotrones que pueden aportar los isótopos necesarios para la mayoría de los grandes 

hospitales. Otro problema de PET es su relativa baja resolución (aproximadamente 5 mm), en 

comparación con otras técnicas de imagen como la tomografía computarizada o la resonancia 

magnética. Se están diseñando nuevos escáneres con el fin de mejorar la resolución. Y finalmente, 

hay una necesidad de reducir la cantidad de radiación que se inyecta en los pacientes para realizar 

un escáner PET, con el fin de minimizar los posibles efectos secundarios de la radiación. Esto se 

resuelve mediante el uso de nuevos diseños de escáneres con una mayor sensibilidad y una mejor 

localización de los eventos detectados (con la técnica del TOF), que permiten obtener imágenes de 

calidad pero con dosis más bajas para el paciente. Esta tesis se centra en el estudio de algunos de 

estos nuevos diseños con simulaciones y la evaluación de la mejora obtenida mediante los 

escáneres TOF-PET/CT en diferentes situaciones. 
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Los métodos de simulación Monte Carlo (MC) permiten estudiar las propiedades de un escáner 

que no puedan ser obtenidas experimentalmente, desarrollar y evaluar distintas correcciones y 

métodos de reconstrucción, así como también conocer el impacto en el rendimiento de los 

escáneres PET de determinadas modificaciones en su diseño y configuración, sin tener que 

construir múltiples prototipos. PeneloPET es un código MC basado en PENELOPE, para 

simulaciones PET que permite tener en cuenta la geometría del detector, la electrónica de 

adquisición y materiales y definiciones de las fuentes radiactivas. Esta herramienta se utiliza para la 

simulación de transporte de electrones, positrones y fotones con energías de hasta 1 GeV. 

PeneloPET es un código adaptado especialmente para simulaciones PET e incluye componentes 

básicos de la geometría del detector, la electrónica de adquisición y material y definiciones de las 

fuentes radiactivas.  

Esta tesis se basa en simulaciones de PeneloPET de varias adquisiciones correspondientes a 

escáneres TOF-PET/CT de última generación. Uno de los principales objetivos de esta tesis es 

validar PeneloPET, que ya ha sido validado con escáneres preclínicos,  para escáneres PET 

clínicos. Por lo tanto, simularon los escáneres PET/CT  TruePoint Biograph (B-TP), Biograph 

TruePoint con TrueV (B-TPTV) y Biograph mCT. Estos escáneres tienen una configuración de tres 

(B-TP) y cuatro (B-TPTV y MCT) anillos de 48 bloques detectores. Cada bloque consta una matriz 

de 13 × 13 cristales de 4 × 4 × 20 mm3 de oxyorthosilicato de lutecio (LSO). Las simulaciones se 

ajustaron para reproducir algunos resultados experimentales de estos escáneres para 

posteriormente comparar resultados simulados con otra serie de con datos experimentales 

adicionales. Entre los parámetros estimados, se encuentra la fracción de sensibilidad, la resolución 

espacial, la tasa de cuentas efectiva (NEC) y la fracción de dispersión (SF). Las simulaciones se 

emplearon  también para evaluar los valores óptimos de algunos parámetros del sistema, tales 

como la ventana de energía y de tiempo de coincidencia y para evaluar el efecto de algunas 

modificaciones del sistema (como el número de anillos) en el rendimiento. Además se comprobó la 

capacidad del código PeneloPET para incorporar la información de TOF en la simulación. 
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Figura R.3. Geometría del escáner Biograph-TPTV simulado con PeneloPET, donde se observan los 
cuatro anillos detectores y en el centro, el maniquí NEMA usado como estándar para caracterizar 
escáneres clínicos. 
 

La razón de elegir los escáneres Biograph de Siemens viene fundamentada porque han sido 

uno de los primeros en tener capacidad de tiempo de vuelo y porque el rendimiento, de las 

múltiples versiones del Biograph que han ido apareciendo en el mercado ha sido medido y 

publicado con detalle y precisión. Se ha tenido además la suerte de contar con la colaboración de 

Bjoern Jakoby, científico encargado en Siemens de las pruebas de rendimiento del Biograph.  

En esta tesis también se ha estudiado el impacto del uso de la información de TOF en las 

imágenes reconstruidas. Las imágenes PET muestran un mapa del radiotrazador que emite los 

fotones dentro del paciente. Esta imagen se obtiene a partir de los pares de rayos gamma 

detectados, a través de un proceso de reconstrucción de imagen que implementa un modelo de la 

emisión y la detección de la radiación. Este modelo puede ser muy simple, como el usado en los 

métodos de reconstrucción analíticos, o mucho más realista como el empleado en los métodos 

iterativos. En esta tesis hemos utilizado nuestro código de reconstrucción 3D iterativo GFIRST que 

implementa el algoritmo 3D-OSEM. Las imágenes se han reconstruido con y sin usar la 

información de tiempo de vuelo, con el fin de investigar la ganancia en calidad de imagen que se 

puede llegar a obtener en diferentes casos con distintos niveles de ruido. Para ello se ha estudiado 

la relación señal-ruido, el contraste y el ruido en las imágenes correspondientes a un maniquí 

NEMA empleado habitualmente para la caracterización de estas máquinas. 

 En general esta tesis busca obtener un mejor conocimiento de las características de los 

escáneres clínicos PET de última generación, mediante herramientas de simulación y de 

reconstrucción de imagen que permitan investigar y encontrar posibles mejoras en sus diseños. 
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Podemos singularizar el objetivo principal de la tesis como el de lograr la traslación del 

conocimiento y experiencia adquiridos por el Grupo de Física Nuclear (GFN) durante casi 8 años 

de investigación en imagen PET preclínica, al campo de la imagen clínica. Los dos objetivos 

principales conducentes al objetivo principal son: 

1) Validar la herramienta de simulación del GFN, PeneloPET en el entorno preclínico, 

simulando y comparando con los resultados de la familia de escáneres PET/CT 

Biograph de Siemens, en particular con la incorporación de la información de Tiempo de 

Vuelo (TOF). 

2) Extender las herramientas de reconstrucción de imagen PET desarrolladas en el grupo, 

en particular GFIRST, al campo clínico y evaluar la contribución de la información TOF a 

la calidad de la imagen reconstruida. 
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Simulaciones Monte Carlo de Escáneres PET clínicos 
 

En este capítulo se evaluó la capacidad del código de simulación Monte Carlo PeneloPET de 

simular escáneres PET/CT clínicos. Para este propósito, se simularon distintas medidas de 

rendimiento de las máquinas B-TP, B-TPTV y mCT PET/CT (Siemens Medical Solutions EE.UU., 

Inc.) y los resultados se compararon con los datos experimentales presentes en la literatura. 

Uno de los principales problemas a la hora de reproducir mediante simulaciones el 

comportamiento de un escáner comercial, consiste en que existen una serie de parámetros 

internos de la máquina que no se encuentran disponibles en las publicaciones. En esta tesis, se ha 

demostrado que PeneloPET es lo suficientemente flexible como para adaptarse fácilmente a 

diferentes ingredientes de como el tiempo muerto de la electrónica, que han sido ajustados para 

que las curvas experimentales de la tasa de cuentas efectivas (NEC) para uno de los escáneres (el 

B-TPTV) pudieran ser reproducidas.  

 
Figura R.4 Comparativa de la tasa de cuentas efectivas NEC en función de la concentración de 
actividad, con los datos simulados y los datos experimentales. Las curvas se han obtenido con el 
tiempo de coincidencia y la ventana de energía de (Jakoby et al., 2009, 2011). 
 

Una vez que la simulación se ha ajustado para reproducir la sensibilidad del escáner B-TPTV, 

las predicciones para la fracción de dispersión (Tabla R.1) y la tasa de cuentas efectivas NEC 

obtenidas de la simulación (Tabla R.1 y Figura R.4), están de acuerdo dentro del 5 % con los 

valores medidos para los tres escáneres bajo investigación. Asimismo, los resultados simulados y 

experimentales de la resolución espacial también son similares (Tabla R.2), estando las diferencias 

dentro de la incertidumbre experimental.  
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Table R.1. Resumen del valor máximo de la tasa de cuentas efectivas NEC (Noise equivalent counts), y la 
Fracción de Dispersión (SF) para varias configuraciones de escáneres. Todos los resultados se obtuvieron con las 
ventanas de coincidencia temporal y de energía igual a la usada en los experimentos (Jakoby et al., 2011, 2009).  

 
 
 
Tabla R.2. Resolución espacial simulada y experimental del escaner B-TPTV. Los resultados experimentales 
tienen una incertidumbre de ± 0.3 mm (Jakoby et al., 2009) 

Número 
de anillos  

Maximo de la curva NEC (Kcps) @(kBq/ml) Fracción de Dispersión  (%) 

Simulado 
(esta tesis) 

Simulado 
(Eriksson et 
al., 2007) 

Experimental Simulado 
(esta tesis) 

Simulado 
(Eriksson et 
al., 2007) 

Experimental 

B-TP 90 @ 33 100@34 93@34 34.3 33 32.0 

B-TPTV 161@32.5 177@34 161@31.5 31.3 35 32.5 

mCT 177@34 - 180.3@29 34.8 - 33.5 

5-rings 259@39 - - 30.8 - - 

8-rings 489@35 - - 32.0 - - 

10-rings 787@30 800@31 - 33.1 35 - 

 FWHM (mm) FWTM (mm) 
 Simulado Experimental Simulado Experiment

al 
1 cm del centro 

Transversal 4.6 4.2 8.5 8.1 

Axial 4.2 4.5 8.4 9.2 

Resolución Media 4.4 4.4   

10 cm del centro 

Transversal( radial) 5.5 4.6 9.0 9.4 

Transversal (tangen.) 5.6 5.0 10.2 9.4 

Axial 4.4 5.5 7.5 10.5 

 Resolución Media  5.3 5.0   
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Figura R.5 Tasa de cuentas efectivas NEC en función de la concentración de actividad, para distintos 
valores de la ventana inferior de energía usada para elegir los eventos verdaderos.  

 
Estos resultados validan el uso de PeneloPET para simular los escáneres clínicos. Con una 

herramienta de simulación validada, podemos realizar simulaciones para investigar el efecto de la 

variación de varios parámetros del escáner básicos en el rendimiento del sistema B-TPTV. Por 

ejemplo, se midió el impacto de la ventana de energía en la los valores del máximo de la curva 

NEC. Las simulaciones permiten la determinación de los valores óptimos de este tipo de 

parámetros. Para el B-TPTV, las simulaciones confirmaron que los valores predeterminados de 

fábrica, una ventana de energía 425 a 650 keV son las mejores opciones (Figura R.5). 

La sensibilidad del sistema PET se puede aumentar mediante la colocación de más anillos de 

detectores, y también mediante el aumento de la máxima diferencia entre anillos para los pares de 

eventos de coincidencias aceptados. La buena concordancia de las simulaciones con las medidas 

en los escáneres existentes, permiten hacer predicciones fiables para escáneres con un mayor 

número de anillos o mayor diferencia de anillo. La diferencia entre anillos aumentada del escáner 

PET mCT conduce a un aumento del 19% en la sensibilidad, en comparación con el escáner con 

diferencia entre anillos normal, el B-TPTV. Esta mayor diferencia entre anillos en las cuentas que 

se aceptan en el mCT también conduce a un aumento del 10% del pico de la NEC pico, en 

comparación con el B-TPTV (tabla R.2). Estos resultados están de acuerdo con la simulación 

previa hecha con GATE (Eriksson et al., 2007) o con SimSET (MacDonald et al., 2008).  
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Reconstrucción de Imagen PET con información de Tiempo de 
Vuelo 
En este capítulo se muestran los pasos realizados para la reconstrucción de imágenes a partir de 

sinogramas obtenidos de las simulaciones de los escáneres clínicos. Por un lado se creó un código 

en de reconstrucción analítica de imagen, usado normalmente en las comparaciones de 

rendimiento de escáneres, y por el otro se adaptó el código de reconstrucción iterativa GFIRST a 

escáneres clínicos. También se describen las correcciones de normalización, rellenado de huecos 

(gaps) y atenuación, fundamentales para obtener imágenes de calidad (ver figuras R.6 y R.7) 

 

 
Figura R.6. Ejemplo de sinograma con huecos en a) para los escáneres Biograph, máscara usada 
para corregirlos en b), y sinograma corregido en c).  
 

 
Figure R.7. Reconstrucción analítica FBP del maniquí de calidad de imagen: sin normalización (a), 
con normalización (b) y con normalización y rellenado de huecos (c).  
 

Una vez establecida la herramienta para la reconstrucción en escáneres clínicos y las 

correcciones necesarias, se puede proceder a evaluar el impacto del uso de la información del TOF 

en la calidad de las imágenes reconstruidas. Tal como se puede observar en las imágenes de la 

figura R.8 y R.9, el usar TOF permite una convergencia más rápida y una mejor calidad de imagen.  
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Figura R.8. Imágenes reconstruidas del maniquí de calidad de imagen de NEMA con una relación de 
actividad de 8 a 1 en las regiones calientes (esferas) respecto al fondo. Sin usar la información de 
TOF (a) y usando TOF (b). Los resultados, de izquierda a derecha corresponden a las imágenes de 1 
a 5 iteraciones.  
 

 
Figura R.9: Perfil de las imágenes reconstruidas con y sin información de TOF a lo largo de las 
esferas de 10 y 13 mm tras 1 iteración. 
 

Para realizar un análisis cuantitativo de las imágenes reconstruidas con y sin usar la información 

de tiempo de vuelo, se usaron diversas métricas que analizan características de la imagen como el 

nivel de ruido de las zonas uniformes, el contraste (medido como la relación entre las regiones de 

mayor actividad frente al fondo) y la relación señal-ruido que da una idea de la posibilidad de 

detectar una lesión en una imagen PET de este tipo.  
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Figura R.10  Relación señal-ruido frente al número de iteraciones para las esferas de 10 y 13 mm con 
y sin usar TOF. Cada punto corresponde a una iteración con 10 subsets. 
 

Finalmente, se estudió la variación del impacto del uso de la información de TOF en la 

reconstrucción en función del número de cuentas adquiridas. Uno de los principales resultados 

obtenidos en esta sección es que se ha determinado que a mayor número de cuentas en la 

imagen, la mejora en el contraste y el ruido que se obtiene con TOF es mayor, tal como se puede 

ver en la Tabla 4.3. 

Tabla R.3 Contraste y ruido de fondo para las esferas de 10 mm en las imágenes del maniquí de calidad, 
reconstruidas sin TOF y con la información TOF, para 3 estudios diferentes con 12, 112 y 970 millones de 
cuentas. Para cada caso, los valores mostrados corresponden al número óptimo de iteraciones de acuerdo a la 
relación señal-ruido (SNR) tanto con TOF como sin TOF. 

 
Cuentas 

(Mcts) 

Contraste Ruido % 

970 112 12 970 112 12 

Sin-TOF 2.9 2.7 2.6 4.5 5.4 11.7 

TOF 3.1 2.8 2.8 3.6 5.0 10.7 
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Resumen y Conclusiones 
En esta tesis se ha mostrado que el código de simulación Monte Carlo PeneloPET, desarrollado 

en el Grupo de Física Nuclear de la Universidad Complutense de Madrid, es lo suficientemente 

flexible como para incorporar las principales características de distintos escáneres PET, incluyendo 

escáneres clínicos, logrando reproducir las medidas experimentales obtenidas con estas máquinas. 

Una de los principales problemas de simular escáneres comerciales consiste en el hecho de 

que generalmente algunas de sus características (como la electrónica y el proceso de formación de 

coincidencias) no son conocidas. En ese caso es necesario ajustar una serie de parámetros de 

manera que se reproduzcan los datos experimentales publicados. En esta tesis se ha mostrado 

que una vez realizado ese ajuste, se pueden reproducir otra serie de datos experimentales 

adicionales, así como otros escáneres de la misma familia (que comparten muchas características 

comunes).  

En concreto, una vez que la simulación se ha afinado para reproducir la sensibilidad del escáner 

B-TPTV, las predicciones para la fracción de dispersión están de acuerdo dentro de un 5% con los 

valores medidos para los tres escáneres bajo investigación. Asimismo, la sensibilidad, la resolución 

y la tasa de cuentas efectivas NEC de los escáneres B-TP, B-TPTV y mCT se lograron reproducir 

dentro de las incertidumbres experimentales.  

Una vez que se tienen todos los parámetros del escáner, se ha podido estudiar cómo afecta el 

variar alguno de estos parámetros en las principales características de su rendimiento (como la 

sensibilidad o la tasa de cuentas efectiva NEC). Tal como era de esperar, muchos de los 

parámetros óptimos estimados (como la ventana de energía usada para elegir las coincidencias) 

coinciden con los empleados en los escáneres comerciales. En otros casos, se ha podido estimar 

lo que se puede llegar a ganar en sensibilidad con escáneres con un mayor número de detectores.  

En estas simulaciones, se ha incorporado al información de TOF en los ficheros de salida, de 

manera similar a como se hace en los escáneres clínicos, demostrando que PeneloPET es capaz 

de incorporar fácilmente esta información.  

En esta tesis se ha demostrado también la mejora en la imagen que se obtiene mediante el uso 

de la información TOF obtenida en los escáneres PET. Se encontró que la información TOF, en las 

reconstrucciones realizadas con el código GFIRST permite obtener un mejor contraste de imagen y 

menor ruido, y también mayor SNR que sin TOF. Se ha demostrado cuantitativamente que la 

ganancia SNR debido a TOF tiene el mayor efecto en las adquisiciones con un gran número de 

eventos. 
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Como conclusión, esta tesis muestra que PeneloPET es una potente herramienta para la 

simulación y diseño de escáneres PET clínicos. Además, el código de la reconstrucción, GFIRST 

ha mostrado suficiente flexibilidad como para incorporar información TOF y estudiar su impacto en 

la calidad de imagen. La combinación de estos instrumentos presentados en esta memoria se 

pueden utilizar para generar nuevos escáneres clínicos que puedan proporcionar imágenes con 

mejor resolución, mejor detectabilidad de lesiones y que requieran dosis más baja de radiación 

para los pacientes. 



 

 

 


